84 research outputs found

    In silico drug repurposing for the identification of potential candidate molecules against arboviruses infection

    Get PDF
    Arboviral diseases caused by dengue (DENV), Zika (ZIKV) and chikungunya (CHIKV) viruses represent a major public health problem worldwide, especially in tropical areas where millions of infections occur every year. The aim of this research was to identify candidate molecules for the treatment of these diseases among the drugs currently available in the market, through in silico screening and subsequent in vitro evaluation with cell culture models of DENV and ZIKV infections. Numerous pharmaceutical compounds from antibiotics to chemotherapeutic agents presented high in silico binding affinity for the viral proteins, including ergotamine, antrafenine, natamycin, pranlukast, nilotinib, itraconazole, conivaptan and novobiocin. These five last compounds were tested in vitro, being pranlukast the one that exhibited the best antiviral activity. Further in vitro assays for this compound showed a significant inhibitory effect on DENV and ZIKV infection of human monocytic cells and human hepatocytes (Huh-7 cells) with potential abrogation of virus entry. Finally, intrinsic fluorescence analyses suggest that pranlukast may have some level of interaction with three viral proteins of DENV: envelope, capsid, and NS1. Due to its promising results, suitable accessibility in the market and reduced restrictions compared to other pharmaceuticals; the anti-asthmatic pranlukast is proposed as a drug candidate against DENV, ZIKV, and CHIKV, supporting further in vitro and in vivo assessment of the potential of this and other lead compounds that exhibited good affinity scores in silico as therapeutic agents or scaffolds for the development of new drugs against arboviral diseases. © 2019 Elsevier B.V.Universidad TecnolĂłgica de Pereira, UTP: TRFCI-1P2016 National Institutes of Health, NIH National Institutes of Health, NIH: R01 AI24493 Department of Science, Information Technology and Innovation, Queensland Government, DSITI: 811-2018 Universidad AutĂłnoma de Bucaramanga, UNABThe authors wish to thank the Administrative Department of Science, Technology and Innovation of Colombia [Grant: Colciencias No. 811-2018 ], Universidad Nacional AutĂłnoma de MĂ©xico [Grant: Programa de Becas Posdoctorales en la UNAM 2016 ], Universidad TecnolĂłgica de BolĂ­var [Grant: TRFCI-1P2016 ] and the National Institutes of Health [NIH grant R01 AI24493 ] for their financial support. Appendix AA continuaciĂłn se relacionan los compuestos quĂ­micos y su nĂșmero de registro CAS (Chemical Abstracts Service) antrafenine, 55300-29-3; conivaptan, 168626-94-6, 210101-16-9; ergotamine, 113-15-5, 52949-35-6; itraconazole, 84625-61-6; natamycin, 52882-37-8, 7681-93-8; nilotinib, 641571-10-0; novobiocin, 1476-53-5, 303-81-1, 39301-00-3, 4309-70-0; pranlukast, 103177-37-

    An N-Acetyl Cysteine Ruthenium Tricarbonyl Conjugate Enables Simultaneous Release of CO and Ablation of Reactive Oxygen Species.

    Get PDF
    We have designed and synthesised a [Ru(CO)3 Cl2 (NAC)] pro-drug that features an N-acetyl cysteine (NAC) ligand. This NAC carbon monoxide releasing molecule (CORM) conjugate is able to simultaneously release biologically active CO and to ablate the concurrent formation of reactive oxygen species (ROS). Complexes of the general formulae [Ru(CO)3 (L)3 ](2+) , including [Ru(CO)3 Cl(glycinate)] (CORM-3), have been shown to produce ROS through a water-gas shift reaction, which contributes significantly, for example, to their antibacterial activity. In contrast, NAC-CORM conjugates do not produce ROS or possess antibacterial activity. In addition, we demonstrate the synergistic effect of CO and NAC both for the inhibition of nitric oxide (formation) and in the expression of tumour-necrosis factor (TNF)-α. This work highlights the advantages of combining a CO-releasing scaffold with the anti-oxidant and anti-inflammatory drug NAC in a unique pro-drug.We thank the EU (Marie Curie CIG to G.J.L.B.), FCT Portugal (FCT Investigator to G.J.L.B.; SFRH/BPD/95253/2013 to J.D.S.) and the EPSRC for funding. The NMR spectrometers are part of The National NMR Facility, supported by Fundação para a CiĂȘncia e a Tecnologia (RECI/BBB-BQB/0230/2012). G.J.L.B. is a Royal Society University Research Fellow.This is the final version of the article. It first appeared from Wiley via http://dx.doi.org/10.1002/chem.20150247

    Fumigant Toxicity and Oviposition Deterrency of the Essential Oil from Cardamom, Elettaria cardamomum, Against Three Stored—product Insects

    Get PDF
    Use of insecticides can have disruptive effects on the environment. Replacing the chemical compounds in these insecticides with plant materials, however, can be a safe method with low environmental risk. In the current study, chemical composition and insecticidal activities of the essential oil from cardamom, Elettaria cardamomum L. (Maton) (Zingiberales: Zingiberaceae) on the adults of three stored product pests was investigated. Results indicated that essential oil of E. cardamomum toxic to the bruchid beetle, Callosobruchus maculatus Fabricius (Coleoptera: Bruchidae), the red flour beetle, Tribolium castaneum Herbst (Coleoptera: Tenebrionidae), and the flour moth, Ephestia kuehniella Zeller (Lepidoptera: Pyralidae). Adults of E. kuehniella were more sensitive than the Coleoptera. Also, the highest mortality of these insects was seen after 12 hours. Results of the LT50 tests showed that the lethal time of mortality occurred between 10–20 hours in various test concentrations. Essential oil of E. cardamomum had a good efficacy on oviposition deterrence of C. maculatus females, too. The chemical constituents of the essential oils were analyzed by gas chromatography—mass spectrometry. The major constituents of cardamom were identified as 1,8-cineol, α-terpinyl acetate, terpinene and fenchyl alcohol. These results suggest that essential oil of E. cardamomum is a good choice for control of stored product pests

    Geographical patterns in blood lead in relation to industrial emissions and traffic in Swedish children, 1978–2007

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Blood lead concentrations (B-Pb) were measured in 3 879 Swedish school children during the period 1978–2007. The objective was to study the effect of the proximity to lead sources based on the children's home and school location.</p> <p>Methods</p> <p>The children's home address and school location were geocoded and their proximity to a lead smelter and major roads was calculated using geographical information system (GIS) software. All the statistical analyses were carried out using means of generalized log-linear modelling, with natural-logarithm-transformed B-Pb, adjusted for sex, school year, lead-exposing hobby, country of birth and, in the periods 1988–1994 and 1995–2007, parents' smoking habits.</p> <p>Results</p> <p>The GIS analysis revealed that although the emission from the smelter and children's B-Pb levels had decreased considerably since 1978, proximity to the lead smelter continued to affect levels of B-Pb, even in recent years (geometric mean: near smelter: 22.90 ÎŒg/l; far from smelter 19.75 ÎŒg/l; p = 0.001). The analysis also revealed that proximity to major roads noticeably affected the children's B-Pb levels during the period 1978–1987 (geometric mean near major roads: 44.26 ÎŒg/l; far from roads: 38.32 ÎŒg/l; p = 0.056), due to the considerable amount of lead in petrol. This effect was, however, not visible after 1987 due to prohibition of lead in petrol.</p> <p>Conclusion</p> <p>The results show that proximity to the lead smelter still has an impact on the children's B-Pb levels. This is alarming since it could imply that living or working in the vicinity of a former lead source could pose a threat years after reduction of the emission. The analysis also revealed that urban children exposed to lead from traffic were only affected during the early period, when there were considerable amounts of lead in petrol, and that the prohibition of lead in petrol in later years led to reduced levels of lead in the blood of urban children.</p

    Urban Endocrine Disruptors Targeting Breast Cancer Proteins

    No full text
    Humans are exposed to a huge amount of environmental pollutants called endocrine disrupting chemicals (EDCs). These molecules interfere with the homeostasis of the body, usually through mimicking natural hormones leading to activation or blocking of their receptors. Many of these compounds have been associated with a broad range of diseases including the development or increased susceptibility to breast cancer, the most prevalent cancer in women worldwide, according to the World Health Organization. Thus, this article presents a virtual high-throughput screening (vHTS) to evaluate the affinity of proteins related to breast cancer, such as ESR1, ERBB2, PGR, BCRA1, and SHBG, among others, with EDCs from urban sources. A blind docking strategy was employed to screen each protein-ligand pair in triplicate in AutoDock Vina 2.0, using the computed binding affinities as ranking criteria. The three-dimensional structures were previously obtained from EDCs DataBank and Protein Data Bank, prepared and optimized by SYBYL X-2.0. Some of the chemicals that exhibited the best affinity scores for breast cancer proteins in each category were 1,3,7,8-tetrachlorodibenzo-p-dioxin, bisphenol A derivatives, perfluorooctanesulfonic acid, and benzo(a)pyrene, for catalase, several proteins, sex hormone-binding globulin, and cytochrome P450 1A2, respectively. An experimental validation of this approach was performed with a complex that gave a moderate binding affinity in silico, the sex hormone binding globulin (SHBG), and bisphenol A (BPA) complex. The protein was obtained using DNA recombinant technology and the physical interaction with BPA assessed through spectroscopic techniques. BPA binds on the recombinant SHBG, and this results in an increase of its α helix content. In short, this work shows the potential of several EDCs to bind breast cancer associated proteins as a tool to prioritize compounds to perform in vitro analysis to benefit the regulation or exposure prevention by the general population

    Imposex in Stramonita haemastoma from coastal sites of Cartagena, Colombia

    No full text
    <div><p>Abstract Imposex is the development of male sexual characteristics caused by the toxic effects of some chemicals that acts as an endocrinal disruptor. Antifouling paints contain these chemicals. Cartagena lacks studies to indicate the extent of imposex in its coastal waters. The aim of this study was to determine the prevalence of imposex in the gastropod Stramonita haemastoma in Cartagena, Colombia. Specimens were collected during 2013 from locations of high and low influence of port activity. Morphometric measurements and the frequency of the occurrence of imposex were registered. The comparison among morphometric variables showed statistically significant differences between the two sites studied. Furthermore, the females of the S. haemastoma species presented an imposex frequency of 93.1% in Birds’ Island, Cartagena Bay, compared to 31.8% in La Bocana. The relative penis size index or RPLI (10.145 and 3.231) and vas deferens sequence index or VDSI (2.83 and 1.16), showed possible contamination by organotin compounds in both places.</p></div
    • 

    corecore