90 research outputs found

    cOOpD: Reformulating COPD classification on chest CT scans as anomaly detection using contrastive representations

    Full text link
    Classification of heterogeneous diseases is challenging due to their complexity, variability of symptoms and imaging findings. Chronic Obstructive Pulmonary Disease (COPD) is a prime example, being underdiagnosed despite being the third leading cause of death. Its sparse, diffuse and heterogeneous appearance on computed tomography challenges supervised binary classification. We reformulate COPD binary classification as an anomaly detection task, proposing cOOpD: heterogeneous pathological regions are detected as Out-of-Distribution (OOD) from normal homogeneous lung regions. To this end, we learn representations of unlabeled lung regions employing a self-supervised contrastive pretext model, potentially capturing specific characteristics of diseased and healthy unlabeled regions. A generative model then learns the distribution of healthy representations and identifies abnormalities (stemming from COPD) as deviations. Patient-level scores are obtained by aggregating region OOD scores. We show that cOOpD achieves the best performance on two public datasets, with an increase of 8.2% and 7.7% in terms of AUROC compared to the previous supervised state-of-the-art. Additionally, cOOpD yields well-interpretable spatial anomaly maps and patient-level scores which we show to be of additional value in identifying individuals in the early stage of progression. Experiments in artificially designed real-world prevalence settings further support that anomaly detection is a powerful way of tackling COPD classification

    Detection of inspiratory recruitment of atelectasis by automated lung sound analysis as compared to four-dimensional computed tomography in a porcine lung injury model

    Get PDF
    Background: Cyclic recruitment and de-recruitment of atelectasis (c-R/D) is a contributor to ventilator-induced lung injury (VILI). Bedside detection of this dynamic process could improve ventilator management. This study investigated the potential of automated lung sound analysis to detect c-R/D as compared to four-dimensional computed tomography (4DCT). Methods: In ten piglets (25 ± 2 kg), acoustic measurements from 34 thoracic piezoelectric sensors (Meditron ASA, Norway) were performed, time synchronized to 4DCT scans, at positive end-expiratory pressures of 0, 5, 10, and 15 cmH2O during mechanical ventilation, before and after induction of c-R/D by surfactant washout. 4DCT was post-processed for within-breath variation in atelectatic volume (Δ atelectasis) as a measure of c-R/D. Sound waveforms were evaluated for: 1) dynamic crackle energy (dCE): filtered crackle sounds (600–700 Hz); 2) fast Fourier transform area (FFT area): spectral content above 500 Hz in frequency and above −70 dB in amplitude in proportion to the total amount of sound above −70 dB amplitude; and 3) dynamic spectral coherence (dSC): variation in acoustical homogeneity over time. Parameters were analyzed for global, nondependent, central, and dependent lung areas. Results: In healthy lungs, negligible values of Δ atelectasis, dCE, and FFT area occurred. In lavage lung injury, the novel dCE parameter showed the best correlation to Δ atelectasis in dependent lung areas (R2 = 0.88) where c-R/D took place. dCE was superior to FFT area analysis for each lung region examined. The analysis of dSC could predict the lung regions where c-R/D originated. Conclusions: c-R/D is associated with the occurrence of fine crackle sounds as demonstrated by dCE analysis. Standardized computer-assisted analysis of dCE and dSC seems to be a promising method for depicting c-R/D

    Qualitative and quantitative evaluation of computed tomography changes in adults with cystic fibrosis treated with elexacaftor-tezacaftor-ivacaftor: a retrospective observational study

    Get PDF
    Introduction: The availability of highly effective triple cystic fibrosis transmembrane conductance regulator (CFTR) modulator combination therapy with elexacaftor–tezacaftor–ivacaftor (ETI) has improved pulmonary outcomes and quality of life of people with cystic fibrosis (pwCF). The aim of this study was to assess computed tomography (CT) changes under ETI visually with the Brody score and quantitatively with dedicated software, and to correlate CT measures with parameters of clinical response.Methods: Twenty two adult pwCF with two consecutive CT scans before and after ETI treatment initiation were retrospectively included. CT was assessed visually employing the Brody score and quantitatively by YACTA, a well-evaluated scientific software computing airway dimensions and lung parenchyma with wall percentage (WP), wall thickness (WT), lumen area (LA), bronchiectasis index (BI), lung volume and mean lung density (MLD) as parameters. Changes in CT metrics were evaluated and the visual and quantitative parameters were correlated with each other and with clinical changes in sweat chloride concentration, spirometry [percent predicted of forced expiratory volume in one second (ppFEV1)] and body mass index (BMI).Results: The mean (SD) Brody score improved with ETI [55 (12) vs. 38 (15); p < 0.001], incl. sub-scores for mucus plugging, peribronchial thickening, and parenchymal changes (all p < 0.001), but not for bronchiectasis (p = 0.281). Quantitatve WP (p < 0.001) and WT (p = 0.004) were reduced, conversely LA increased (p = 0.003), and BI improved (p = 0.012). Lung volume increased (p < 0.001), and MLD decreased (p < 0.001) through a reduction of ground glass opacity areas (p < 0.001). Changes of the Brody score correlated with those of quantitative parameters, exemplarily WT with the sub-score for mucus plugging (r = 0.730, p < 0.001) and peribronchial thickening (r = 0.552, p = 0.008). Changes of CT parameters correlated with those of clinical response parameters, in particular ppFEV1 with the Brody score (r = −0.606, p = 0.003) and with WT (r = −0.538, p = 0.010).Discussion: Morphological treatment response to ETI can be assessed using the Brody score as well as quantitative CT parameters. Changes in CT correlated with clinical improvements. The quantitative analysis with YACTA proved to be an objective, reproducible and simple method for monitoring lung disease, particularly with regard to future interventional clinical trials

    Reproducibility of pulmonary magnetic resonance angiography in adults with muco-obstructive pulmonary disease

    Get PDF
    Background Recent studies support magnetic resonance angiography (MRA) as a diagnostic tool for pulmonary arterial disease. Purpose To determine MRA image quality and reproducibility, and the dependence of MRA image quality and reproducibility on disease severity in patients with chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Material and Methods Twenty patients with COPD (mean age 66.5 ± 8.9 years; FEV1% = 42.0 ± 13.3%) and 15 with CF (mean age 29.3 ± 9.3 years; FEV1% = 66.6 ± 15.8%) underwent morpho-functional chest magnetic resonance imaging (MRI) including time-resolved MRA twice one month apart (MRI1, MRI2), and COPD patients underwent non-contrast computed tomography (CT). Image quality was assessed visually using standardized subjective 5-point scales. Contrast-to-noise ratio (CNR) and signal-to-noise ratio (SNR) were measured by regions of interest. Disease severity was determined by spirometry, a well-evaluated chest MRI score, and by computational CT emphysema index (EI) for COPD. Results Subjective image quality was diagnostic for all MRA at MRI1 and MRI2 (mean score = 4.7 ± 0.6). CNR and SNR were 4 43.8 ± 8.7 and 50.5 ± 8.7, respectively. Neither image quality score nor CNR or SNR correlated with FEV1% or chest MRI score for COPD and CF (r = 0.239–0.248). CNR and SNR did not change from MRI1 to MRI2 (P = 0.434–0.995). Further, insignificant differences in CNR and SNR between MRA at MRI1 and MRI2 did not correlate with FEV1% nor chest MRI score in COPD and CF (r = −0.238–0.183), nor with EI in COPD (r = 0.100–0.111). Conclusion MRA achieved diagnostic quality in COPD and CF patients and was highly reproducible irrespective of disease severity. This supports MRA as a robust alternative to CT in patients with underlying muco-obstructive lung disease

    Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT)

    Get PDF
    Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years;M:F, 33: 7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y;+11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Delta) in OE and Delta 40th percentile (r=0.69;p<0.001) as compared to Delta 80th percentile (r=0.58;p<0.001);closer correlation was found between Delta ground-glass extent and Delta 40th percentile (r=0.66, p<0.001) as compared to Delta 80th percentile (r=0.47, p=0.002),while the Delta reticulations correlated better with the Delta 80th percentile (r=0.56, p<0.001) in comparison to Delta 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Delta 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern;furthermore Delta 80th percentile might reveal the course of reticular opacities

    Visual vs Fully Automatic Histogram-Based Assessment of Idiopathic Pulmonary Fibrosis (IPF) Progression Using Sequential Multidetector Computed Tomography (MDCT)

    Get PDF
    Objectives To describe changes over time in extent of idiopathic pulmonary fibrosis (IPF) at multidetector computed tomography (MDCT) assessed by semi-quantitative visual scores (VSs) and fully automatic histogram-based quantitative evaluation and to test the relationship between these two methods of quantification. Methods Forty IPF patients (median age: 70 y, interquartile: 62-75 years;M:F, 33: 7) that underwent 2 MDCT at different time points with a median interval of 13 months (interquartile: 10-17 months) were retrospectively evaluated. In-house software YACTA quantified automatically lung density histogram (10th-90th percentile in 5th percentile steps). Longitudinal changes in VSs and in the percentiles of attenuation histogram were obtained in 20 untreated patients and 20 patients treated with pirfenidone. Pearson correlation analysis was used to test the relationship between VSs and selected percentiles. Results In follow-up MDCT, visual overall extent of parenchymal abnormalities (OE) increased in median by 5 %/year (interquartile: 0 %/y;+11 %/y). Substantial difference was found between treated and untreated patients in HU changes of the 40th and of the 80th percentiles of density histogram. Correlation analysis between VSs and selected percentiles showed higher correlation between the changes (Delta) in OE and Delta 40th percentile (r=0.69;p<0.001) as compared to Delta 80th percentile (r=0.58;p<0.001);closer correlation was found between Delta ground-glass extent and Delta 40th percentile (r=0.66, p<0.001) as compared to Delta 80th percentile (r=0.47, p=0.002),while the Delta reticulations correlated better with the Delta 80th percentile (r=0.56, p<0.001) in comparison to Delta 40th percentile (r=0.43, p=0.003). Conclusions There is a relevant and fully automatically measurable difference at MDCT in VSs and in histogram analysis at one year follow-up of IPF patients, whether treated or untreated: Delta 40th percentile might reflect the change in overall extent of lung abnormalities, notably of ground-glass pattern;furthermore Delta 80th percentile might reveal the course of reticular opacities

    Quantitative CT analysis of lung parenchyma to improve malignancy risk estimation in incidental pulmonary nodules.

    Get PDF
    OBJECTIVES To assess the value of quantitative computed tomography (QCT) of the whole lung and nodule-bearing lobe regarding pulmonary nodule malignancy risk estimation. METHODS A total of 251 subjects (median [IQR] age, 65 (57-73) years; 37% females) with pulmonary nodules on non-enhanced thin-section CT were retrospectively included. Twenty percent of the nodules were malignant, the remainder benign either histologically or at least 1-year follow-up. CT scans were subjected to in-house software, computing parameters such as mean lung density (MLD) or peripheral emphysema index (pEI). QCT variable selection was performed using logistic regression; selected variables were integrated into the Mayo Clinic and the parsimonious Brock Model. RESULTS Whole-lung analysis revealed differences between benign vs. malignant nodule groups in several parameters, e.g. the MLD (-766 vs. -790 HU) or the pEI (40.1 vs. 44.7 %). The proposed QCT model had an area-under-the-curve (AUC) of 0.69 (95%-CI, 0.62-0.76) based on all available data. After integrating MLD and pEI into the Mayo Clinic and Brock Model, the AUC of both clinical models improved (AUC, 0.91 to 0.93 and 0.88 to 0.91, respectively). The lobe-specific analysis revealed that the nodule-bearing lobes had less emphysema than the rest of the lung regarding benign (EI, 0.5 vs. 0.7 %; p < 0.001) and malignant nodules (EI, 1.2 vs. 1.7 %; p = 0.001). CONCLUSIONS Nodules in subjects with higher whole-lung metrics of emphysema and less fibrosis are more likely to be malignant; hereby the nodule-bearing lobes have less emphysema. QCT variables could improve the risk assessment of incidental pulmonary nodules. KEY POINTS • Nodules in subjects with higher whole-lung metrics of emphysema and less fibrosis are more likely to be malignant. • The nodule-bearing lobes have less emphysema compared to the rest of the lung. • QCT variables could improve the risk assessment of incidental pulmonary nodules

    A Next-Generation Liquid Xenon Observatory for Dark Matter and Neutrino Physics

    Get PDF
    The nature of dark matter and properties of neutrinos are among the mostpressing issues in contemporary particle physics. The dual-phase xenontime-projection chamber is the leading technology to cover the availableparameter space for Weakly Interacting Massive Particles (WIMPs), whilefeaturing extensive sensitivity to many alternative dark matter candidates.These detectors can also study neutrinos through neutrinoless double-beta decayand through a variety of astrophysical sources. A next-generation xenon-baseddetector will therefore be a true multi-purpose observatory to significantlyadvance particle physics, nuclear physics, astrophysics, solar physics, andcosmology. This review article presents the science cases for such a detector.<br
    corecore