2,912 research outputs found
The determination of the admissible nilpotent orbits in real classical groups
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 1987.Includes bibliographical references (p. 85).by James O. Schwartz.Ph.D
Intersubject Regularity in the Intrinsic Shape of Human V1
Previous studies have reported considerable intersubject variability in the three-dimensional geometry of the human primary visual cortex (V1). Here we demonstrate that much of this variability is due to extrinsic geometric features of the cortical folds, and that the intrinsic shape of V1 is similar across individuals. V1 was imaged in ten ex vivo human hemispheres using high-resolution (200 μm) structural magnetic resonance imaging at high field strength (7 T). Manual tracings of the stria of Gennari were used to construct a surface representation, which was computationally flattened into the plane with minimal metric distortion. The instrinsic shape of V1 was determined from the boundary of the planar representation of the stria. An ellipse provided a simple parametric shape model that was a good approximation to the boundary of flattened V1. The aspect ration of the best-fitting ellipse was found to be consistent across subject, with a mean of 1.85 and standard deviation of 0.12. Optimal rigid alignment of size-normalized V1 produced greater overlap than that achieved by previous studies using different registration methods. A shape analysis of published macaque data indicated that the intrinsic shape of macaque V1 is also stereotyped, and similar to the human V1 shape. Previoud measurements of the functional boundary of V1 in human and macaque are in close agreement with these results
Tools for loading MEDLINE into a local relational database
BACKGROUND: Researchers who use MEDLINE for text mining, information extraction, or natural language processing may benefit from having a copy of MEDLINE that they can manage locally. The National Library of Medicine (NLM) distributes MEDLINE in eXtensible Markup Language (XML)-formatted text files, but it is difficult to query MEDLINE in that format. We have developed software tools to parse the MEDLINE data files and load their contents into a relational database. Although the task is conceptually straightforward, the size and scope of MEDLINE make the task nontrivial. Given the increasing importance of text analysis in biology and medicine, we believe a local installation of MEDLINE will provide helpful computing infrastructure for researchers. RESULTS: We developed three software packages that parse and load MEDLINE, and ran each package to install separate instances of the MEDLINE database. For each installation, we collected data on loading time and disk-space utilization to provide examples of the process in different settings. Settings differed in terms of commercial database-management system (IBM DB2 or Oracle 9i), processor (Intel or Sun), programming language of installation software (Java or Perl), and methods employed in different versions of the software. The loading times for the three installations were 76 hours, 196 hours, and 132 hours, and disk-space utilization was 46.3 GB, 37.7 GB, and 31.6 GB, respectively. Loading times varied due to a variety of differences among the systems. Loading time also depended on whether data were written to intermediate files or not, and on whether input files were processed in sequence or in parallel. Disk-space utilization depended on the number of MEDLINE files processed, amount of indexing, and whether abstracts were stored as character large objects or truncated. CONCLUSIONS: Relational database (RDBMS) technology supports indexing and querying of very large datasets, and can accommodate a locally stored version of MEDLINE. RDBMS systems support a wide range of queries and facilitate certain tasks that are not directly supported by the application programming interface to PubMed. Because there is variation in hardware, software, and network infrastructures across sites, we cannot predict the exact time required for a user to load MEDLINE, but our results suggest that performance of the software is reasonable. Our database schemas and conversion software are publicly available at
In-Plane Vibration of Hammerhead Resonators for Chemical Sensing Applications
Thermally excited and piezoresistively detected in-plane cantilever resonators have been previously demonstrated for gas- and liquid-phase chemical and biosensing applications. In this work, the hammerhead resonator geometry, consisting of a cantilever beam supporting a wider semicircular “head”, vibrating in an in-plane vibration mode, is shown to be particularly effective for gas-phase sensing with estimated limits of detection in the sub-ppm range for volatile organic compounds. This paper discusses the hammerhead resonator design and the particular advantages of the hammerhead geometry, while also presenting mechanical characterization, optical characterization, and chemical sensing results. These data highlight the distinct advantages of the hammerhead geometry over other cantilever designs
The Identification of a Small Molecule Compound That Reduces HIV-1 Nef-Mediated Viral Infectivity Enhancement
Nef is a multifunctional HIV-1 protein that accelerates progression to AIDS, and enhances the infectivity of progeny viruses through a mechanism that is not yet understood. Here, we show that the small molecule compound 2c reduces Nef-mediated viral infectivity enhancement. When added to viral producer cells, 2c did not affect the efficiency of viral production itself. However, the infectivity of the viruses produced in the presence of 2c was significantly lower than that of control viruses. Importantly, an inhibitory effect was observed with Nef+ wild-type viruses, but not with viruses produced in the absence of Nef or in the presence of proline-rich PxxP motif-disrupted Nef, both of which displayed significantly reduced intrinsic infectivity. Meanwhile, the overexpression of the SH3 domain of the tyrosine kinase Hck, which binds to a PxxP motif in Nef, also reduced viral infectivity. Importantly, 2c inhibited Hck SH3-Nef binding, which was more marked when Nef was pre-incubated with 2c prior to its incubation with Hck, indicating that both Hck SH3 and 2c directly bind to Nef and that their binding sites overlap. These results imply that both 2c and the Hck SH3 domain inhibit the interaction of Nef with an unidentified host protein and thereby reduce Nef-mediated infectivity enhancement. The first inhibitory compound 2c is therefore a valuable chemical probe for revealing the underlying molecular mechanism by which Nef enhances the infectivity of HIV-1
- …