21 research outputs found

    AKT1 (E17K) mutation profiling in breast cancer: prevalence, concurrent oncogenic alterations, and blood-based detection.

    Get PDF
    BACKGROUND: The single hotspot mutation AKT1 [G49A:E17K] has been described in several cancers, with the highest incidence observed in breast cancer. However, its precise role in disease etiology remains unknown. METHODS: We analyzed more than 600 breast cancer tumor samples and circulating tumor DNA for AKT1 (E17K) and alterations in other cancer-associated genes using Beads, Emulsions, Amplification, and Magnetics digital polymerase chain reaction technology and targeted exome sequencing. RESULTS: Overall AKT1 (E17K) mutation prevalence was 6.3 % and not correlated with age or menopausal stage. AKT1 (E17K) mutation frequency tended to be lower in patients with grade 3 disease (1.9 %) compared with those with grade 1 (11.1 %) or grade 2 (6 %) disease. In two cohorts of patients with advanced metastatic disease, 98.0 % (n = 50) and 97.1 % (n = 35) concordance was obtained between tissue and blood samples for the AKT1 (E17K) mutation, and mutation capture rates of 66.7 % (2/3) and 85.7 % (6/7) in blood versus tissue samples were observed. Although AKT1-mutant tumor specimens were often found to harbor concurrent alterations in other driver genes, a subset of specimens harboring AKT1 (E17K) as the only known driver alteration was also identified. Initial follow-up survival data suggest that AKT1 (E17K) could be associated with increased mortality. These findings warrant additional long-term follow-up. CONCLUSIONS: The data suggest that AKT1 (E17K) is the most likely disease driver in certain breast cancer patients. Blood-based mutation detection is achievable in advanced-stage disease. These findings underpin the need for a further enhanced-precision medicine paradigm in the treatment of breast cancer

    Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment

    No full text
    The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes

    Addressing the Reciprocal Crosstalk between the AR and the PI3K/AKT/mTOR Signaling Pathways for Prostate Cancer Treatment

    No full text
    The reduction in androgen synthesis and the blockade of the androgen receptor (AR) function by chemical castration and AR signaling inhibitors represent the main treatment lines for the initial stages of prostate cancer. Unfortunately, resistance mechanisms ultimately develop due to alterations in the AR pathway, such as gene amplification or mutations, and also the emergence of alternative pathways that render the tumor less or, more rarely, completely independent of androgen activation. An essential oncogenic axis activated in prostate cancer is the phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, as evidenced by the frequent alterations of the negative regulator phosphatase and tensin homolog (PTEN) and by the activating mutations in PI3K subunits. Additionally, crosstalk and reciprocal feedback loops between androgen signaling and the PI3K/AKT/mTOR signaling cascade that activate pro-survival signals and play an essential role in disease recurrence and progression have been evidenced. Inhibitors addressing different players of the PI3K/AKT/mTOR pathway have been evaluated in the clinic. Only a limited benefit has been reported in prostate cancer up to now due to the associated side effects, so novel combination approaches and biomarkers predictive of patient response are urgently needed. Here, we reviewed recent data on the crosstalk between AR signaling and the PI3K/AKT/mTOR pathway, the selective inhibitors identified, and the most advanced clinical studies, with a focus on combination treatments. A deeper understanding of the complex molecular mechanisms involved in disease progression and treatment resistance is essential to further guide therapeutic approaches with improved outcomes

    Dual targeting of the androgen receptor and PI3K/AKT/mTOR pathways in prostate cancer models improves antitumor efficacy and promotes cell apoptosis

    No full text
    Prostate cancer is a frequent malignancy in older men and has a very high 5‐year survival rate if diagnosed early. The prognosis is much less promising if the tumor has already spread outside the prostate gland. Targeted treatments mainly aim at blocking androgen receptor (AR) signaling and initially show good efficacy. However, tumor progression due to AR‐dependent and AR‐independent mechanisms is often observed after some time, and novel treatment strategies are urgently needed. Dysregulation of the PI3K/AKT/mTOR pathway in advanced prostate cancer and its implication in treatment resistance has been reported. We compared the impact of PI3K/AKT/mTOR pathway inhibitors with different selectivity profiles on in vitro cell proliferation and on caspase 3/7 activation as a marker for apoptosis induction, and observed the strongest effects in the androgen‐sensitive prostate cancer cell lines VCaP and LNCaP. Combination treatment with the AR inhibitor darolutamide led to enhanced apoptosis in these cell lines, the effects being most pronounced upon cotreatment with the pan‐PI3K inhibitor copanlisib. A subsequent transcriptomic analysis performed in VCaP cells revealed that combining darolutamide with copanlisib impacted gene expression much more than individual treatment. A comprehensive reversal of the androgen response and the mTORC1 transcriptional programs as well as a marked induction of DNA damage was observed. Next, an in vivo efficacy study was performed using the androgen‐sensitive patient‐derived prostate cancer (PDX) model LuCaP 35 and a superior efficacy was observed after the combined treatment with copanlisib and darolutamide. Importantly, immunohistochemistry analysis of these treated tumors showed increased apoptosis, as revealed by elevated levels of cleaved caspase 3 and Bcl‐2‐binding component 3 (BBC3). In conclusion, these data demonstrate that concurrent blockade of the PI3K/AKT/mTOR and AR pathways has superior antitumor efficacy and induces apoptosis in androgen‐sensitive prostate cancer cell lines and PDX models
    corecore