84 research outputs found

    Loop radiofrequency coils for clinical magnetic resonance imaging at 7 TESLA

    Get PDF
    To date, the 7 T magnetic resonance imaging (MRI) scanner remains a pure research system and there is still a long way ahead till full clinical integration. Key challenges are the absence of a body transmit radiofrequency (RF) coil as well as of dedicated RF coils in general, short RF wavelengths of the excitation field in the order of the dimensions of a human body leading to signal inhomogeneities, and severe limitations with respect to the specific absorption rate. They all result in a strong need for RF engineering and sequence optimization to explore the potential of MRI at 7 T, and to pave the way for its future clinical application. In this thesis, high-resolution MRI with a rather small field-of-view (FOV) in the head and neck region (parotid gland/duct and carotid arteries), and of the musculoskeletal system as well as with a very large FOV in the abdomen (spine) were presented. Therefore, a variety of RF coils were used: from a commercially available single-loop coil to novel, specially developed phased array coils each consisting of eight loop elements. Methods to thoroughly characterize and test the developed RF coils were presented, including numerical simulations, bench and MRI measurements. Characterization with respect to performance for parallel acquisition techniques and an extensive compliance testing for patient safety were described in detail. All aspects of the engineering part, from design to optimization, and finally, to the in vivo application in volunteers and patients were covered. Since clinical applicability has always been the purpose, optimized imaging protocols along with a discussion on the clinical relevance was included in each study. The presented RF loop coils widely expand the options for clinical research at 7 T and advance the integration of this technology in a clinical setting

    European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND).

    Get PDF
    INTRODUCTION: The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists. METHODS: EUFIND combined consensus workshops and data sharing for multisite analysis, focusing on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imaging, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy, and quality assurance. Across these topics, EUFIND considered standard operating procedures, safety, and multivendor harmonization. RESULTS: The clinical and research opportunities and challenges of 7T MRI in each subtopic are set out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study presented in this report. Results show that a large multisite 7T imaging network with highly advanced and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field MRI studies and clinical trials. DISCUSSION: The EUFIND network can be a major driver for advancing clinical neuroimaging research using 7T and for identifying use-cases for clinical applications in neurodegeneration

    Development and evaluation of a numerical simulation approach to predict metal artifacts from passive implants in MRI

    No full text
    Objective!#!This study presents the development and evaluation of a numerical approach to simulate artifacts of metallic implants in an MR environment that can be applied to improve the testing procedure for MR image artifacts in medical implants according to ASTM F2119.!##!Methods!#!The numerical approach is validated by comparing simulations and measurements of two metallic test objects made of titanium and stainless steel at three different field strengths (1.5T, 3T and 7T). The difference in artifact size and shape between the simulated and measured artifacts were evaluated. A trend analysis of the artifact sizes in relation to the field strength was performed.!##!Results!#!The numerical simulation approach shows high similarity (between 75% and 84%) of simulated and measured artifact sizes of metallic implants. Simulated and measured artifact sizes in relation to the field strength resulted in a calculation guideline to determine and predict the artifact size at one field strength (e.g., 3T or 7T) based on a measurement that was obtained at another field strength only (e.g. 1.5T).!##!Conclusion!#!This work presents a novel tool to improve the MR image artifact testing procedure of passive medical implants. With the help of this tool detailed artifact investigations can be performed, which would otherwise only be possible with substantial measurement effort on different MRI systems and field strengths

    Non-enhanced T1-weighted liver vessel imaging at 7 Tesla.

    No full text
    OBJECTIVES: Aim of the study was to assess the feasibility and to compare three non-enhanced T1-weighted (w) sequences for liver vessel imaging at 7 Tesla (T). MATERIAL AND METHODS: 12 healthy volunteers were examined on a 7 T whole-body MR-system. The following non-enhanced sequences were acquired: T1w 2D FLASH, T1w 3D FLASH and Time of flight (TOF)-MRA. Qualitative image analysis was performed by two radiologists including over all image quality as well as vessel delineation of the liver arteries, liver veins and portal vein and the presence of artifacts using a five-point scale (5 = excellent vessel delineation to 1 = non-diagnostic). Contrast ratios (CR), SNR und CNR of the above named vessels in correlation to adjacent liver tissue were calculated for quantitative assessment. For statistical analysis, a Wilcoxon Rank Test was applied. RESULTS: All three sequences provided a homogenous hyperintense delineation of the assessed liver vessels. Qualitative image analysis demonstrated the superiority of TOF-MRA, providing best overall image quality (TOF 4.17, 2D FLASH 3.42, 3D FLASH 3.46; p<0.01) as well as highest image quality values for all analyzed liver vessel segments. TOF-MRA was least impaired by B1 inhomogeneity (4.13) and susceptibility artifacts (4.63) out of all three sequences (p<0.01). Quantitative image analysis confirmed the superiority of TOF MRA showing significant higher CR values for all liver vessels (e.g. right hepatic artery TOF 0.47, 2D FLASH 0.09, 3D FLASH 0.11 with p = 0.02 and 0.01, respectively). Providing the lowest standard deviation in noise, TOF showed highest values for SNR and CNR. CONCLUSIONS: Non-enhanced T1w imaging in general and TOF MRA in particular, appear to be promising techniques for high quality non-enhanced liver vessel assessment at 7 T

    Towards real-time cardiovascular magnetic resonance-guided transarterial aortic valve implantation: In vitro evaluation and modification of existing devices

    No full text
    Abstract Background Cardiovascular magnetic resonance (CMR) is considered an attractive alternative for guiding transarterial aortic valve implantation (TAVI) featuring unlimited scan plane orientation and unsurpassed soft-tissue contrast with simultaneous device visualization. We sought to evaluate the CMR characteristics of both currently commercially available transcatheter heart valves (Edwards SAPIEN™, Medtronic CoreValve®) including their dedicated delivery devices and of a custom-built, CMR-compatible delivery device for the Medtronic CoreValve® prosthesis as an initial step towards real-time CMR-guided TAVI. Methods The devices were systematically examined in phantom models on a 1.5-Tesla scanner using high-resolution T1-weighted 3D FLASH, real-time TrueFISP and flow-sensitive phase-contrast sequences. Images were analyzed for device visualization quality, device-related susceptibility artifacts, and radiofrequency signal shielding. Results CMR revealed major susceptibility artifacts for the two commercial delivery devices caused by considerable metal braiding and precluding in vivo application. The stainless steel-based Edwards SAPIEN™ prosthesis was also regarded not suitable for CMR-guided TAVI due to susceptibility artifacts exceeding the valve's dimensions and hindering an exact placement. In contrast, the nitinol-based Medtronic CoreValve® prosthesis was excellently visualized with delineation even of small details and, thus, regarded suitable for CMR-guided TAVI, particularly since reengineering of its delivery device toward CMR-compatibility resulted in artifact elimination and excellent visualization during catheter movement and valve deployment on real-time TrueFISP imaging. Reliable flow measurements could be performed for both stent-valves after deployment using phase-contrast sequences. Conclusions The present study shows that the Medtronic CoreValve® prosthesis is potentially suited for real-time CMR-guided placement in vivo after suggested design modifications of the delivery system.</p

    7 Tesla MRI of microbleeds and white matter lesions as seen in vascular dementia

    No full text
    Purpose: To evaluate 7T MRI in the assessment of cerebrovascular alterations as seen in vascular dementia by means of detection of cerebral microbleeds (CMB) and depiction of white matter lesions (WML). 7T imaging was evaluated with respect to 1.5T. Materials and Methods: Ten healthy volunteers and 10 patients with CMBs and/or WMLs were examined at 1.5T and 7T using gradient-echo (T2*, SWI) and turbo-spin-echo sequences (FLAIR). Comparisons of image quality, CMB and WML detection rates between sequences and field strengths were performed. Results: Using high-resolution SWI at 7T 129 CMBs were detected compared to 75 at 1.5T using clinical SWI.With T2* at 7T 101 CMBs could be detected (33 CMBs at 1.5T). Lesion sizes were significantly larger for higher field strength. FLAIR images at 7T highlighted WMLs known from 1.5T with comparable extent. Gray and white matter contrast in FLAIR was slightly better at 1.5T, whereas image resolution and contrast of theWMLs to surrounding tissue was higher at 7T. Conclusion: By means of higher sensitivity for CMBs, 7T (SWI, T2*) might have significant impact on the early detection, diagnosis, and optimized antithrombotic therapy of cerebrovascular patients (eg, vascular dementia) in the future. Given the current state of technical development, 7T is approximately on par with 1.5T in the depiction of WMLs and their distribution, but holds the potential for future improvements
    • …
    corecore