125 research outputs found
Modeling Iron and Light Controls on the Summer \u3ci\u3ePhaeocystis antarctica\u3c/i\u3e Bloom in the Amundsen Sea Polynya
Of all the Antarctic coastal polynyas, the Amundsen Sea Polynya is the most productive per unit area. Observations from the 2010-2011 Amundsen Sea Polynya International Research Expedition (ASPIRE) revealed that both light and iron can limit the growth of phytoplankton (Phaeocystis antarctica), but how these controls manifest over the bloom season is poorly understood, especially with respect to their climate sensitivity. Using a 1-D biogeochemical model, we examine the influence of light and iron limitation on the phytoplankton bloom and vertical carbon flux at 12 stations representing different bloom stages within the polynya. Model parameters are determined by Bayesian optimization and assimilation of ASPIRE observations. The model-data fit is most sensitive to phytoplankton physiological parameters, which among all model parameters are best constrained by the optimization. We find that the 1-D model captures the basic elements of the bloom observed during ASPIRE, despite some discrepancies between modeled and observed dissolved iron distributions. With this model, we explore the way iron availability, in combination with light availability, controlled the rise, peak, and decline of the bloom at the 12 stations. Modeled light limitation by self-shading is very strong, but iron is drawn down as the bloom rises, becoming limiting in combination with light as the bloom declines. These model results mechanistically confirm the importance of climate-sensitive controls like stratification and meltwater on phytoplankton bloom development and carbon export in this region
Diatom Hotspots Driven by Western Boundary Current Instability
Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems
Greenland Subglacial Discharge as a Driver of Hotspots of Increasing Coastal Chlorophyll Since the Early 2000s
Subglacial discharge emerging from the base of Greenland\u27s marine-terminating glaciers drives upwelling of nutrient-rich bottom waters to the euphotic zone, which can fuel nitrate-limited phytoplankton growth. Here, we use buoyant plume theory to quantify this subglacial discharge-driven nutrient supply on a pan-Greenland scale. The modeled nitrate fluxes were concentrated in a few critical systems, with half of the total modeled nitrate flux anomaly occurring at just 14% of marine-terminating glaciers. Increasing subglacial discharge fluxes results in elevated nitrate fluxes, with the largest flux occurring at Jakobshavn Isbræ in Disko Bay, where subglacial discharge is largest. Subglacial discharge and nitrate flux anomaly also account for significant temporal variability in summer satellite chlorophyll a (Chl) within 50 km of Greenland\u27s coast, particularly in some regions in central west and northwest Greenland
The summer bacterial and archaeal community composition of the northern Barents Sea
Climate change related alterations in the Arctic have influences on the marine ecosystems, in particular on phytoplankton bloom dynamics. Since phytoplankton blooms are the main provider of carbon sources to the microbial loop, the bacterial and archaeal community are affected by the changes as well. Warmer water and less sea ice can lead to an earlier onset of phytoplankton blooms and consequently also to changes in the bacterial and archaeal community dynamics throughout Arctic summers. Here, we compared the bacterial and archaeal community composition during three summers (2018, 2019, and 2021) along a transect from the Barents Sea to the Arctic Ocean north of Svalbard. We used 16S rRNA gene sequencing to investigate changes in the communities in time and space. The main results showed that, Gammaproteobacteria (Nitrincolaceae), Bacteroidia (Polaribacter), and Alphaproteobacteria (SAR11 clade 1a members) dominated the bacterial and archaeal community in the surface waters but varied in abundance patterns between the years. The variations are potentially a result of different phytoplankton bloom stages and consequently differences in the availability of carbon sources. The distinctly different deep water communities were dominated by Candidatus Nitrosopumilus, Marinimicrobia, and members of the SAR324 clade in all years. The results indicate that changes in phytoplankton bloom dynamics can influence bacterial and archaeal community and thereby marine carbon cycling in surface waters, although direct links to the effects of global warming remain uncertain.publishedVersio
Diatom hotspots driven by western boundary current instability
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 48(11), (2021): e2020GL091943, https://doi.org/10.1029/2020GL091943.Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems.This research was supported by the National Science Foundation (OCE-1657803 and OCE-1657855) and the Dalio Explorer Fund. H. Oliver was supported by a WHOI Postdoctoral Scholar award
Final countdown for biodiversity hotspots
Most of Earth's biodiversity is found in 36 biodiversity hotspots, yet less than 10% natural intact vegetation remains. We calculated models projecting the future state of most of these hotspots for the year 2050, based on future climatic and agroeconomic pressure. Our models project an increasing demand for agricultural land resulting in the conversion of >50% of remaining natural intact vegetation in about one third of all hotspots, and in 2-6 hotspots resulting from climatic pressure. This confirms that, in the short term, habitat loss is of greater concern than climate change for hotspots and their biodiversity. Hotspots are most severely threatened in tropical Africa and parts of Asia, where demographic pressure and the demand for agricultural land is highest. The speed and magnitude of pristine habitat loss is, according to our models, much greater than previously shown when combining both scenarios on future climatic and agroeconomic pressure
Diatom Hotspots Driven by Western Boundary Current Instability
Abstract Climatic changes have decreased the stability of the Gulf Stream (GS), increasing the frequency at which its meanders interact with the Mid-Atlantic Bight (MAB) continental shelf and slope region. These intrusions are thought to suppress biological productivity by transporting low-nutrient water to the otherwise productive shelf edge region. Here we present evidence of widespread, anomalously intense subsurface diatom hotspots in the MAB slope sea that likely resulted from a GS intrusion in July 2019. The hotspots (at ∼50 m) were associated with water mass properties characteristic of GS water (∼100 m); it is probable that the hotspots resulted from the upwelling of GS water during its transport into the slope sea, likely by a GS meander directly intruding onto the continental slope east of where the hotspots were observed. Further work is required to unravel how increasingly frequent direct GS intrusions could influence MAB marine ecosystems
A regional, early spring bloom of Phaeocystis pouchetii on the New England continental shelf
Author Posting. © American Geophysical Union, 2021. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 126(2), (2021): e2020JC016856, https://doi.org/10.1029/2020JC016856.The genus Phaeocystis is distributed globally and has considerable ecological, biogeochemical, and societal impacts. Understanding its distribution, growth and ecological impacts has been limited by lack of extensive observations on appropriate scales. In 2018, we investigated the biological dynamics of the New England continental shelf and encountered a substantial bloom of Phaeocystis pouchetii. Based on satellite imagery during January through April, the bloom extended over broad expanses of the shelf; furthermore, our observations demonstrated that it reached high biomass levels, with maximum chlorophyll concentrations exceeding 16 µg L−1 and particulate organic carbon levels > 95 µmol L−1. Initially, the bloom was largely confined to waters with temperatures <6°C, which in turn were mostly restricted to shallow areas near the coast. As the bloom progressed, it appeared to sink into the bottom boundary layer; however, enough light and nutrients were available for growth. The bloom was highly productive (net community production integrated through the mixed layer from stations within the bloom averaged 1.16 g C m−2 d−1) and reduced nutrient concentrations considerably. Long‐term coastal observations suggest that Phaeocystis blooms occur sporadically in spring on Nantucket Shoals and presumably expand onto the continental shelf. Based on the distribution of Phaeocystis during our study, we suggest that it can have a significant impact on the overall productivity and ecology of the New England shelf during the winter/spring transition.This project was supported by the US National Science Foundation (Grants 1657855, 1657803, and 1657489). NES‐LTER contributions were supported by grants to HMS from NSF (Grant 1655686) and the Simons Foundation (Grant 561126). VPR operations were supported by the Dalio Explore Fund.2021-07-1
Joint AAPM Task Group 282/EFOMP Working Group Report: Breast dosimetry for standard and contrast‐enhanced mammography and breast tomosynthesis
: Currently, there are multiple breast dosimetry estimation methods for mammography and its variants in use throughout the world. This fact alone introduces uncertainty, since it is often impossible to distinguish which model is internally used by a specific imaging system. In addition, all current models are hampered by various limitations, in terms of overly simplified models of the breast and its composition, as well as simplistic models of the imaging system. Many of these simplifications were necessary, for the most part, due to the need to limit the computational cost of obtaining the required dose conversion coefficients decades ago, when these models were first implemented. With the advancements in computational power, and to address most of the known limitations of previous breast dosimetry methods, a new breast dosimetry method, based on new breast models, has been developed, implemented, and tested. This model, developed jointly by the American Association of Physicists in Medicine and the European Federation for Organizations of Medical Physics, is applicable to standard mammography, digital breast tomosynthesis, and their contrast-enhanced variants. In addition, it includes models of the breast in both the cranio-caudal and the medio-lateral oblique views. Special emphasis was placed on the breast and system models used being based on evidence, either by analysis of large sets of patient data or by performing measurements on imaging devices from a range of manufacturers. Due to the vast number of dose conversion coefficients resulting from the developed model, and the relative complexity of the calculations needed to apply it, a software program has been made available for download or online use, free of charge, to apply the developed breast dosimetry method. The program is available for download or it can be used directly online. A separate User's Guide is provided with the software
Prognostic value of natural killer cell/T cell ratios for disease activity in multiple sclerosis
Background and purpose: Natural killer (NK) cells may play a role in multiple sclerosis (MS). Ratios of NK cells to CD4+ T cells have been proposed as a biomarker for the therapeutic effect of stem cell transplantation in MS. The objectives here were to explore the relevance of this ratio in MS patients by analysing NK and T cell subsets, as well as their prognostic value for disease activity. Methods: Baseline peripheral blo
- …