3,195 research outputs found

    Fishers' knowledge and seahorse conservation in Brazil

    Get PDF
    From a conservationist perspective, seahorses are threatened fishes. Concomitantly, from a socioeconomic perspective, they represent a source of income to many fishing communities in developing countries. An integration between these two views requires, among other things, the recognition that seahorse fishers have knowledge and abilities that can assist the implementation of conservation strategies and of management plans for seahorses and their habitats. This paper documents the knowledge held by Brazilian fishers on the biology and ecology of the longsnout seahorse Hippocampus reidi. Its aims were to explore collaborative approaches to seahorse conservation and management in Brazil; to assess fishers' perception of seahorse biology and ecology, in the context evaluating potential management options; to increase fishers' involvement with seahorse conservation in Brazil. Data were obtained through questionnaires and interviews made during field surveys conducted in fishing villages located in the States of Piauí, Ceará, Paraíba, Maranhão, Pernambuco and Pará. We consider the following aspects as positive for the conservation of seahorses and their habitats in Brazil: fishers were willing to dialogue with researchers; although captures and/or trade of brooding seahorses occurred, most interviewees recognized the importance of reproduction to the maintenance of seahorses in the wild (and therefore of their source of income), and expressed concern over population declines; fishers associated the presence of a ventral pouch with reproduction in seahorses (regardless of them knowing which sex bears the pouch), and this may facilitate the construction of collaborative management options designed to eliminate captures of brooding specimens; fishers recognized microhabitats of importance to the maintenance of seahorse wild populations; fishers who kept seahorses in captivity tended to recognize the condtions as poor, and as being a cause of seahorse mortality

    Designing tools to predict and mitigate impacts on water quality following the Australian 2019/2020 wildfires: Insights from Sydney's largest water supply catchment

    Get PDF
    The 2019/20 Australian bushfires (or wildfires) burned the largest forested area in Australia's recorded history, with major socio‐economic and environmental consequences. Among the largest fires was the 280,000 ha Green Wattle Creek Fire which burned large forested areas of the Warragamba catchment. This protected catchment provides critical ecosystem services for Lake Burragorang, one of Australia's largest urban supply reservoirs delivering ~85 % of the water used in Greater Sydney. WaterNSW is the utility responsible for managing water quality in Lake Burragorang. Its postfire risk assessment, carried out in collaboration with researchers in Australia, the UK and USA, involved i) identifying pyrogenic contaminants in ash and soil; ii) quantifying ash loads and contaminant concentrations across the burned area; and iii) estimating the probability and quantity of soil, ash and associated contaminants entrainment for different rainfall scenarios. The work included refining the capabilities of the new WEPPcloud‐WATAR‐AU model (Water Erosion Prediction Project cloud‐Wildfire Ash Transport And Risk‐Australia) for predicting sediment, ash and contaminants transport, aided by outcomes from previous collaborative post‐fire research in the catchment. Approximately two weeks after the Green Wattle Creek Fire was contained, an extreme rainfall event (~276 mm in 72 h), caused extensive ash and sediment delivery into the reservoir. The risk assessment informed on‐ground monitoring and operational mitigation measures (deployment of debris‐catching booms and adjustment of the water supply system configuration), ensuring the continuity of safe water supply to Sydney. WEPPcloud‐WATAR‐AU outputs can prioritize recovery interventions for managing water quality risks by quantifying contaminants on the hillslopes, anticipating water contamination risk, and identifying areas with high susceptibility to ash and sediment transport. This collaborative interaction among scientists and water managers, aimed also at refining model capabilities and outputs to meet managers’ needs, exemplifies the successful outcomes that can be achieved at the interface of industry and science

    Modeling the quantum evolution of the universe through classical matter

    Full text link
    It is well known that the canonical quantization of the Friedmann-Lema\^itre-Robertson-Walker (FLRW) filled with a perfect fluid leads to nonsingular universes which, for later times, behave as their classical counterpart. This means that the expectation value of the scale factor (t)(t) never vanishes and, as tt\to\infty, we recover the classical expression for the scale factor. In this paper, we show that such universes can be reproduced by classical cosmology given that the universe is filled with an exotic matter. In the case of a perfect fluid, we find an implicit equation of state (EoS). We then show that this single fluid with an implict EoS is equivalent to two non-interacting fluids, one of them representing stiff matter with negative energy density. In the case of two non-interacting scalar fields, one of them of the phantom type, we find their potential energy. In both cases we find that quantum mechanics changes completely the configuration of matter for small values of time, by adding a fluid or a scalar field with negative energy density. As time passes, the density of negative energy decreases and we recover the ordinary content of the classical universe. The more the initial wave function of the universe is concentrated around the classical big bang singularity, the more it is necessary to add negative energy, since this type of energy will be responsible for the removal of the classical singularity.Comment: updated version as accepted by Gen. Relativ. Gravi

    Correlation between the heterosis of maize hybrids and genetic divergence among lines

    Get PDF
    The objective of this work was to evaluate grain yield of maize single cross hybrids obtained from diallel crosses among contrasting lines, to estimate the combining ability of the lines, and finally to confirm if the genetic diversity among those lines assessed by molecular markers is correlated with single cross hybrids heterosis. The 36 single cross hybrids resulting from partial diallel and 12 parental lines were evaluated in Campinas in randomized block design, with three replicates and two control lines checks. General combining ability of the lines was estimated according to Griffing model 4. Correlations among matrices were estimated through Mantel statistics, considering heterosis, yield and specific combining ability with genetic divergence assessed by AFLP and SSR. The hybrids PM518 x L111 exhibited an outstanding yield and the lines PM518, IP4035 and L111 showed positive general combining ability. The estimate heterosis ranged from 927 to 6,698 kg ha(-1). A positive and significant correlation was observed in parental lines between heterosis and genetic diversity assessed by AFLP and SSR. The genetic divergence, however, was not enough to determine the specific combining ability and the hybrids yield.42681181
    corecore