95 research outputs found

    O planejamento e programação local em saúde como ferramenta de auxílio à gestão na atenção primária

    Get PDF
    A Atenção Primária em Saúde (APS) enfrenta barreiras organizacionais nas quais o Planejamento e Programação Local em Saúde (PPLS) pode atuar. Dessa forma, o presente trabalho objetiva descrever a aplicabilidade prática do PPLS em uma Unidade de Saúde da Família (USF). Trata-se de um relato de experiência, abrangendo sete acadêmicos do curso de Medicina, uma preceptora, dezessete profissionais da equipe e membros da comunidade da USF. Foram realizadas três ações. A primeira, uma roda de conversa com a equipe, investigou a não adesão dos usuários ao Conselho Local de Saúde. A segunda buscou estimular os profissionais a realizarem Salas de Espera, ferramenta educativa que visa autonomia e autocuidado. Já a terceira buscou motivar um trabalho em equipe coeso e saudável com a ajuda de duas fisioterapeutas num momento dinâmico de relaxamento. Após todas as intervenções, o feedback dos participantes foi coletado de forma escrita, no qual sinalizaram a satisfação e conhecimento adquirido sobre cada atividade desenvolvida com a equipe. Por fim, pôde-se entender a importância do PPLS na formação médica e na construção de estratégias viáveis para superar as fragilidades enfrentadas pelos profissionais atuantes na Estratégia de Saúde da Família

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Pervasive gaps in Amazonian ecological research

    Get PDF

    A search for ultra-high-energy photons at the Pierre Auger Observatory exploiting air-shower universality

    Get PDF
    The Pierre Auger Observatory is the most sensitive detector to primary photons with energies above ∼0.2 EeV. It measures extensive air showers using a hybrid technique that combines a fluorescence detector (FD) with a ground array of particle detectors (SD). The signatures of a photon-induced air shower are a larger atmospheric depth at the shower maximum (Xmax_{max}) and a steeper lateral distribution function, along with a lower number of muons with respect to the bulk of hadron-induced background. Using observables measured by the FD and SD, three photon searches in different energy bands are performed. In particular, between threshold energies of 1-10 EeV, a new analysis technique has been developed by combining the FD-based measurement of Xmax_{max} with the SD signal through a parameter related to its muon content, derived from the universality of the air showers. This technique has led to a better photon/hadron separation and, consequently, to a higher search sensitivity, resulting in a tighter upper limit than before. The outcome of this new analysis is presented here, along with previous results in the energy ranges below 1 EeV and above 10 EeV. From the data collected by the Pierre Auger Observatory in about 15 years of operation, the most stringent constraints on the fraction of photons in the cosmic flux are set over almost three decades in energy

    Study on multi-ELVES in the Pierre Auger Observatory

    Get PDF
    Since 2013, the four sites of the Fluorescence Detector (FD) of the Pierre Auger Observatory record ELVES with a dedicated trigger. These UV light emissions are correlated to distant lightning strikes. The length of recorded traces has been increased from 100 μs (2013), to 300 μs (2014-16), to 900 μs (2017-present), to progressively extend the observation of the light emission towards the vertical of the causative lightning and beyond. A large fraction of the observed events shows double ELVES within the time window, and, in some cases, even more complex structures are observed. The nature of the multi-ELVES is not completely understood but may be related to the different types of lightning in which they are originated. For example, it is known that Narrow Bipolar Events can produce double ELVES, and Energetic In-cloud Pulses, occurring between the main negative and upper positive charge layer of clouds, can induce double and even quadruple ELVES in the ionosphere. This report shows the seasonal and daily dependence of the time gap, amplitude ratio, and correlation between the pulse widths of the peaks in a sample of 1000+ multi-ELVES events recorded during the period 2014-20. The events have been compared with data from other satellite and ground-based sensing devices to study the correlation of their properties with lightning observables such as altitude and polarity

    Outreach activities at the Pierre Auger Observatory

    Get PDF

    The ultra-high-energy cosmic-ray sky above 32 EeV viewed from the Pierre Auger Observatory

    Get PDF

    Large-scale and multipolar anisotropies of cosmic rays detected at the Pierre Auger Observatory with energies above 4 EeV

    Get PDF

    Expected performance of the AugerPrime Radio Detector

    Get PDF
    corecore