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Since 2013, the four sites of the Fluorescence Detector (FD) of the Pierre Auger Observatory
record ELVES with a dedicated trigger. These UV light emissions are correlated to distant
lightning strikes. The length of recorded traces has been increased from 100 `s (2013), to 300 `s
(2014-16), to 900 `s (2017-present), to progressively extend the observation of the light emission
towards the vertical of the causative lightning and beyond. A large fraction of the observed events
shows double ELVES within the time window, and, in some cases, even more complex structures
are observed. The nature of the multi-ELVES is not completely understood but may be related
to the different types of lightning in which they are originated. For example, it is known that
Narrow Bipolar Events can produce double ELVES, and Energetic In-cloud Pulses, occurring
between the main negative and upper positive charge layer of clouds, can induce double and even
quadruple ELVES in the ionosphere. This report shows the seasonal and daily dependence of the
time gap, amplitude ratio, and correlation between the pulse widths of the peaks in a sample of
1000+ multi-ELVES events recorded during the period 2014-20. The events have been compared
with data from other satellite and ground-based sensing devices to study the correlation of their
properties with lightning observables such as altitude and polarity.
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1. Introduction

ELVES (Emission of Light and Very low-frequency perturbations due to Electromagnetic
pulse Sources) are a class of Transient Luminous Events (TLEs), which occur at the base of the
ionosphere above intense electrical storms. The light, emitted in the form of a rapidly expanding
ring, is generated by the electromagnetic pulse (EMP) of extreme lightning that propagates as a
spherical wave from the base of the lightning channel. The EMP intersects the lower ionosphere and
transfers energy to free electrons exciting transitions when they collide with atmospheric molecules.
Those energetic molecules return to their lower-energy state, emitting a wide-frequency spectrum
of light in a process known as fluorescence [1].

The first observations of ELVES were diffuse airglow in the sky [2], but thanks to the improved
sensitivity of the detectors it was possible to measure the rapid lateral expansion of their luminosity
[3], and even its photometric traces began to show multiple-peak structures [4–6]. The study of
these phenomena has significantly advanced in the last decade with TLE detectors from Space [7–
10] and from ground [6, 11, 12]); however, there are still open questions about the phenomenology
of ELVES.

On the other hand, the FluorescenceDetector (FD) of the PierreAugerObservatory [13], located
in the Mendoza province of Argentina, has been detecting ELVES since 2005 [14]. Its observation
footprint for ELVES is 3× 106 km2, including the Córdoba region where large thunderstorms occur
[6]. The Auger FD technology with a 100 ns time resolution has been used to record the internal
structure of ELVES with unprecedented precision. Indeed, the Auger FD has reported on the first
ELVESwith three peaks in its photo-traces [6]. From now on, we will refer to events with more than
one peak in their photo-traces as multi-ELVES. In this report, we show the seasonal distribution of
ELVES detected during the period 2014-20. We also present the analysis of a frequently detected
type of multi-ELVES, whose temporal difference between its two peaks is approximately constant.

2. Sources that may produce multi-ELVES

Currently, it is believed that two-peaks ELVES are originated by intracloud (IC) lightning
stroke. The wide time separation between the peaks was observationally confirmed to correlate
with high altitude compact intracloud lightning discharges (CIDs) [15]. If an IC lightning occurs
at an altitude �1, the first peak in the ELVES photo-trace is created by the EMP direct path to
the ionosphere, while the second one is created by the ground reflection of the EMP reaching the
ionosphere with a time delay [15]. Then, with the time difference (Δ)) between two peaks, we can
reconstruct the bolt altitude �1 (see the method in [16]).

In the top panel of figure 1 a multi-ELVES event that could have been produced by this mech-
anism is shown. The Δ) vs distance from the lightning stroke data should follow the relationship
curves (empty circles curves) for some particular altitude. In this figure, we observe that the data
follow the curve corresponding to �1 = 20 km in two FD sites where this ELVES was observed: i.e
Los Morados and Coihueco. Two bays observing approximately the same Δ) values in the zones
of the ionosphere where their field of view intersect, is instead shown in the right panel of the same
figure.
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Figure 1: Top panel: multi-ELVES event on the night of February 09, 2018, possibly produced through
the EMP ground reflection mechanism. The left panel shows the time difference between peaks from two
FD sites (Coihueco and Los Morados) corresponding to a lightning altitude of about 20 km. In the right
panel two dimensional surface light emission map of the multi-ELVES, showing in color approximately the
same Δ) values from two independent sites. Bottom panel: multi-ELVES event detected on the night of
April 28, 2020, that shows an almost constant Δ) from two independent FD sites: Coihueco and Los Leones
(left panel). In the right panel two dimensional surface light emission map of the multi-ELVES, showing in
color the time difference from the two peaks. The same constant time difference is observed from the two
independent sites.

However, in the multi-ELVES data, we note that very few events follow this production
mechanism. For example, between 2018 and 2020 there are only about 16 ground reflection
mechanism candidates, while a large number of events shows an approximately constant Δ) (see
bottom panel of figure 1) and others that do not even follow some functional between Δ) and
distance to the lightning source. In section 3 we show the seasonal distribution of these events to
better analyze their frequency of production during years.

Different EMPs sources may produce a diversity of ELVES that depends on the properties of
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Trace length (`s) Year Total events Total ME Ratio (ME/Total)
300 2014 508 115 0.226
300 2015 673 201 0.299
300 2016 695 190 0.273
900 2017 1140 323 0.283
900 2018 875 233 0.266
900 2019 1689 500 0.296
900 2020 1157 311 0.269

Table 1: The total number of events and the total number of multi-ELVES detected by the FD in the period
2014-20. The number of events increases from 2017 onwards but the ratio of multi-ELVES to the total
remains more or less constant.

Figure 2: Left panel: monthly distribution of total events, multi-ELVES, and multi-ELVES with Δ) > 80`s
during the period 2014-20. Right panel: monthly ratio of multi-ELVES and multi-ELVES with Δ) > 80`s
to total number of ELVES.

the lightning, such as the type of source, i.e cloud-to-ground (CG), energetic in-cloud pulses (EIPs)
or CIDs, its altitude, waveform and duration. For example, ELVES doublets induced by EIPs are
less separated in space and time than ELVES induced by CIDs [18]. We do not fully understand how
these multi-ELVES are produced but we can analyze their photo-traces, as well as the characteristics
of the lightning, to obtain some clues.

The study on multi-ELVES could be useful for understanding other phenomena that occur
in storms, called Terrestrial Gamma-ray Flashes (TGFs). Recently it has been found that EIPs
associated with some TGFs can produce a current moment waveform with a peak of hundred of
kA km and a duration of 10 `s [18]. These short EIPs are more likely to have accompanying
multi-ELVES [18] because their source currents vary more rapidly. Nevertheless, in this report
we focus on the analysis of multi-ELVES with constant Δ) , further studies will be necessary to
understand the relationship of multi-ELVES with TGFs.
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3. Seasonal distribution of multi-ELVES

From 2017 onwards the number of detected events increases compared to the period 2014-16.
This is due to the improved trigger implemented in 2017 [5]. In table 1 it is summarised the total
number of events, the total number of multi-ELVES, and the ratio for the period 2014-20. With the
extension of the readout system, from 300 `s to 900 `s trace length, we could expect an increase
in the number of detected multi-ELVES to the total number of events since a longer trace allows to
observe events with two peaks far apart from each other. However, the annual ratio of multi-ELVES
to total events remains more or less constant, and over the period 2014-20 it is around 0.273±0.023.

The seasonal distribution of multi-ELVES can be studied by plotting the mean number of
ELVES detected per month in the FD. This distribution is shown in figure 2 for the total events,
multi-ELVES and multi-ELVES with Δ) > 80`s in the period 2014-20. The highest frequencies
of events occur around the southern summer and autumn.

On the other hand, the monthly ratio of multi-ELVES to total is shown in the right panel of
figure 2, where we observe that the ratio of multi-ELVES to total is higher during early summer
(December) and autumn (March-May), while for multi-ELVES with Δ) > 80`s the ratio is higher
in April.

4. Analysis of multi-ELVES with constant time difference

The night of April 28, 2020, has been selected to have the highest number of events with
Δ) > 80`s during the period 2014-20. In this night a total of 144 ELVES were detected, of which
1 could be a multi-ELVES ground reflection mechanism candidate and 33 are multi-ELVES with
almost constant Δ) > 80`s.

For a finer analysis of the multi-ELVES photo-traces, we calculate the ratio between the total
quantity of light from the first peak (&1tot) respect to the total quantity of light from the second
peak (&2tot) of each pixel signal. In figure 3 we show the ratio profile &2tot/&1tot vs the distance to
the lightning bolt of the two multi-ELVES reported in section 1. We notice that the multi-ELVES
with almost constant Δ) > 80`s (bottom panel) shows a different profile from the EMP ground
reflection event (top panel). This profile has the same structure from the two observation sites of
the FD (Coihueco and Los Morados). In the right panel of the same figure, we observe that both
FD sites detect similar &2tot/&1tot profile in the zones of the ionosphere where their fields of view
overlap.

In order to complement the analysis of these multi-ELVES with the characteristics of the
lightning that produced them, we correlated the events from this night with the data provided by the
Earth Networks Total Lightning Network (ENTLN) [19] and the World Wide Lightning Location
Network (WWLLN) [20]. Out of a total of 144 ELVES, 128 were correlated. From the correlation
we obtain the location in latitude and longitude as well as the peak current of the lightning strike.
In figure 5 we show the location of lightning inducing the total ELVES of the night (violet stars),
and those that generated multi-ELVES with almost constant Δ) > 80`s (blue stars).

From previous correlation of Auger events with GLD360 data set during the 05/2017-12/2018
period, we observed an asymmetric polarity distribution in the peak current of lightning inducing
single, double and multi-ELVES. Figure 4 shows that single ELVES are positive polarity dominated
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Figure 3: Left panel: ratio profile of the total light from the second peak (&2tot) respect to the first peak
(&1tot) of the multi-ELVES traces vs the distance to the lightning bolt of two multi-ELVES reported in figure
1. In the right panel two dimensional surface light emission map of the multi-ELVES, showing in color the
&2tot/&1tot ratio from two independent sites. The multi-ELVES with almost constant Δ) > 80`s (bottom
panel) shows a different &2tot/&1tot pattern from the &2tot/&1tot EMP ground reflection event profile (top
panel).

while double andmulti-ELVES are negative polarity dominated. We perform a similar analysis with
ELVES of April 28, 2020. Right panel of figure 5 shows that most of the lightning that produced
multi-ELVES with Δ) > 80`s had a negative polarity as did most of the lightning that produced
the total of ELVES, i.e. this thunderstorm shows a different polarity distribution than expected from
the correlated events in the figure 4. Therefore, it is necessary to analyze the polarity distribution
of each type of storm where there is a high frequency of multi-ELVES.

5. Final remarks

The technical capabilities of the Auger FD, especially its high temporal resolution of 200 ns,
allow the study of multi-ELVES traces in great detail. During the period 2014-20, there are very
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Figure 4: The GLD360 peak current (and polarity) of the sources of EMPs that induced single-, double-,
and multi-peaked ELVES, in coincidence with Auger data during the 05/2017-12/2018 observation period.

Figure 5: Events correlated with ENTLN and WWLLN data. Left panel: the location of lightning inducing
the total of ELVES (violet stars) and those that produced multi-ELVES with almost constant Δ) (blue stars).
Right panel: the peak current distribution of the lightning.

few candidates to be explained by the EMP ground reflection mechanism while a very frequent type
of multi-ELVES shows an almost constant difference between the peaks and greater than 80 `s.

From2017 onwards the number of events increases compared to the period 2014-2016, however,
the annual ratio of multi-ELVES to total events remains rather constant (around 0.273±0.023). The
seasonal distribution of ELVES detected during the period 2014-20 shows that highest frequencies
of events occur around the southern summer and autumn. On the other hand, the ratio of multi-
ELVES to total is higher during early summer and autumn, while for multi-ELVES (ME) with
Δ) > 80`s the ratio is higher in April.

Finally, we show the analysis of the events detected at the night with more multi-ELVES of
constant Δ) (April 28, 2020). The ratio profile &2tot/&1tot of a multi-ELVES with constant Δ) is
different from the profile of a EMP ground reflection mechanism candidate.

In the other hand, out of 144 ELVES 128 were correlated with ENTLN and WWLLN data.
The peak current distribution of this thunderstorm differs from the distribution obtained from
the correlation of Auger data with the GLD360, during the 05/2017-12/2018 observation period.
Therefore, it is important to analyze the peak current distribution for each type of storm, as well as
other characteristics of lightning, such as the type of lightning or the waveform of the electric field
variation signal.
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