71,098 research outputs found

    Intra-group diffuse light in compact groups of galaxies. HCG 79, HCG 88 and HCG 95

    Full text link
    Deep BB and RR images of three Hickson Compact Groups, HCG 79, HCG 88 and HCG 95, were analyzed using a new wavelet technic to measure possible intra-group diffuse light present in these systems. The method used, OV\_WAV, is a wavelet technic particularly suitable to detect low-surface brightness extended structures, down to a S/N=0.1S/N = 0.1 per pixel, which corresponds to a 5-σ\sigma-detection level in wavelet space. The three groups studied are in different evolutionary stages, as can be judged by their very different fractions of the total light contained in their intra-group halos: 46±1146\pm11% for HCG 79 and 11±2611\pm26% for HCG 95, in the BB band, and HCG 88 had no component detected down to a limiting surface brightness of 29.1Bmagarcsec229.1 B mag arcsec^{-2}. For HCG 95 the intra-group light is red, similar to the mean colors of the group galaxies themselves, suggesting that it is formed by an old population with no significant on-going star formation. For HCG 79, however, the intra-group material has significantly bluer color than the mean color of the group galaxies, suggesting that the diffuse light may, at least in part, come from stripping of dwarf galaxies which dissolved into the group potential well.Comment: Two suggested references added to the introductio

    Susceptibility of a two-level atom near an isotropic photonic band edge: transparency and band edge profile reconstruction

    Full text link
    We discuss the necessary conditions for a two-level system in the presence of an isotropic band edge to be transparent to a probe laser field. The two-level atom is transparent whenever it is coupled to a reservoir constituted of two parts - a flat and a non-flat density of modes representing a PBG structure. A proposal on the reconstruction of the band edge profile from the experimentally measured susceptibility is also presented.Comment: 15 pages, 3 figure

    Characterization and quantification of symmetric Gaussian state entanglement through a local classicality criterion

    Full text link
    A necessary and sufficient condition for characterization and quantification of entanglement of any bipartite Gaussian state belonging to a special symmetry class is given in terms of classicality measures of one-party states. For Gaussian states whose local covariance matrices have equal determinants it is shown that separability of a two-party state and classicality of one party state are completely equivalent to each other under a nonlocal operation, allowing entanglement features to be understood in terms of any available classicality measure.Comment: 5 pages, 1 figure. Replaced with final published versio

    Ising Ferromagnet: Zero-Temperature Dynamic Evolution

    Get PDF
    The dynamic evolution at zero temperature of a uniform Ising ferromagnet on a square lattice is followed by Monte Carlo computer simulations. The system always eventually reaches a final, absorbing state, which sometimes coincides with a ground state (all spins parallel), and sometimes does not (parallel stripes of spins up and down). We initiate here the numerical study of ``Chaotic Time Dependence'' (CTD) by seeing how much information about the final state is predictable from the randomly generated quenched initial state. CTD was originally proposed to explain how nonequilibrium spin glasses could manifest equilibrium pure state structure, but in simpler systems such as homogeneous ferromagnets it is closely related to long-term predictability and our results suggest that CTD might indeed occur in the infinite volume limit.Comment: 14 pages, Latex with 8 EPS figure

    Lattice Simulation of Nuclear Multifragmentation

    Full text link
    Motivated by the decade-long debate over the issue of criticality supposedly observed in nuclear multifragmentation, we propose a dynamical lattice model to simulate the phenomenon. Its Ising Hamiltonian mimics a short range attractive interaction which competes with a thermal-like dissipative process. The results here presented, generated through an event-by-event analysis, are in agreement with both experiment and those produced by a percolative (non-dynamical) model.Comment: 8 pages, 3 figure

    Noncommutativity and Duality through the Symplectic Embedding Formalism

    Full text link
    This work is devoted to review the gauge embedding of either commutative and noncommutative (NC) theories using the symplectic formalism framework. To sum up the main features of the method, during the process of embedding, the infinitesimal gauge generators of the gauge embedded theory are easily and directly chosen. Among other advantages, this enables a greater control over the final Lagrangian and brings some light on the so-called "arbitrariness problem". This alternative embedding formalism also presents a way to obtain a set of dynamically dual equivalent embedded Lagrangian densities which is obtained after a finite number of steps in the iterative symplectic process, oppositely to the result proposed using the BFFT formalism. On the other hand, we will see precisely that the symplectic embedding formalism can be seen as an alternative and an efficient procedure to the standard introduction of the Moyal product in order to produce in a natural way a NC theory. In order to construct a pedagogical explanation of the method to the nonspecialist we exemplify the formalism showing that the massive NC U(1) theory is embedded in a gauge theory using this alternative systematic path based on the symplectic framework. Further, as other applications of the method, we describe exactly how to obtain a Lagrangian description for the NC version of some systems reproducing well known theories. Naming some of them, we use the procedure in the Proca model, the irrotational fluid model and the noncommutative self-dual model in order to obtain dual equivalent actions for these theories. To illustrate the process of noncommutativity introduction we use the chiral oscillator and the nondegenerate mechanics

    Collision-Dependent Atom Tunnelling Rate in Bose-Einstein Condensates

    Full text link
    We show that the interaction (cross-collision) between atoms trapped in distinct sites of a double-well potential can significantly increase the atom tunneling rate for special trap configurations leading to an effective linear Rabi regime of population oscillation between the trap wells. The inclusion of cross-collisional effects significantly extends the validity of the two-mode model approach allowing it to be alternatively employed to explain the recently observed increase of tunneling rates due to nonlinear interactions.Comment: 4 pages, 2 figures. Replaced with improved versio

    State reconstruction of finite dimensional compound systems via local projective measurements and one-way classical communication

    Get PDF
    For a finite dimensional discrete bipartite system, we find the relation between local projections performed by Alice, and Bob post-selected state dependence on the global state submatrices. With this result the joint state reconstruction problem for a bipartite system can be solved with strict local projections and one-way classical communication. The generalization to multipartite systems is straightforward.Comment: 4 pages, 1 figur
    corecore