773 research outputs found

    On the origins of scaling corrections in ballistic growth models

    Full text link
    We study the ballistic deposition and the grain deposition models on two-dimensional substrates. Using the Kardar-Parisi-Zhang (KPZ) ansatz for height fluctuations, we show that the main contribution to the intrinsic width, which causes strong corrections to the scaling, comes from the fluctuations in the height increments along deposition events. Accounting for this correction in the scaling analysis, we obtained scaling exponents in excellent agreement with the KPZ class. We also propose a method to suppress these corrections, which consists in divide the surface in bins of size ε\varepsilon and use only the maximal height inside each bin to do the statistics. Again, scaling exponents in remarkable agreement with the KPZ class were found. The binning method allowed the accurate determination of the height distributions of the ballistic models in both growth and steady state regimes, providing the universal underlying fluctuations foreseen for KPZ class in 2+1 dimensions. Our results provide complete and conclusive evidences that the ballistic model belongs to the KPZ universality class in 2+12+1 dimensions. Potential applications of the methods developed here, in both numerics and experiments, are discussed.Comment: 8 pages, 7 figure

    Solution of a model of SAW's with multiple monomers per site on the Husimi lattice

    Full text link
    We solve a model of self-avoiding walks which allows for a site to be visited up to two times by the walk on the Husimi lattice. This model is inspired in the Domb-Joyce model and was proposed to describe the collapse transition of polymers with one-site interactions only. We consider the version in which immediate self-reversals of the walk are forbidden (RF model). The phase diagram we obtain for the grand-canonical version of the model is similar to the one found in the solution of the Bethe lattice, with two distinct polymerized phases, a tricritical point and a critical endpoint.Comment: 16 pages, including 6 figure

    Beliefs About Psychological Problems Inventory (BAPPI) : development and psychometric properties

    Get PDF
    Correspondence concerning this article should be addressed to Prof. Paulo Moreira, Instituto de Psicologia e de Ciências da Educação, Universidade Lusíada, Rua de Moçambique 21 e 71, Porto 4100-348, Portugal. Email: [email protected] clients’ belief systems are components of Effective Therapy Relationships. Thus, it is desirable to include clients’ beliefs about their psychological problems on systematic assessment protocols underlying the process of systematic treatment selection and of tailoring the treatment to the person. However, assessment instruments which specifically capture clients’ beliefs about their psychological problems are scarce. The objective of the studies presented was to evaluate the psychometric properties of the Beliefs About Psychological Problems Inventory (BAPPI), an assessment instrument of the clients’ beliefs about their psychological problems. Study 1 (Exploratory Factor Analysis) involved 200 participants, and Study 2 (Confirmatory Factor Analysis and other validity studies), involved 545 participants. Results revealed that the BAPPI presents a stable factorial structure of six dimensions (Psychodynamic, Humanistic, Biomedical, Cognitive-Behavioral, Systemic, and Eclectic/Integrative). Altogether, analyses of items, internal consistency, reliability, and external validity revealed that the BAPPI is a valid assessment instrument for use in mental health research and practice, especially in the process of systematic treatment selection and, therefore, of matching/tailoring the treatment to the client’s characteristics

    Grand canonical and canonical solution of self-avoiding walks with up to three monomers per site on the Bethe lattice

    Full text link
    We solve a model of polymers represented by self-avoiding walks on a lattice which may visit the same site up to three times in the grand-canonical formalism on the Bethe lattice. This may be a model for the collapse transition of polymers where only interactions between monomers at the same site are considered. The phase diagram of the model is very rich, displaying coexistence and critical surfaces, critical, critical endpoint and tricritical lines, as well as a multicritical point. From the grand-canonical results, we present an argument to obtain the properties of the model in the canonical ensemble, and compare our results with simulations in the literature. We do actually find extended and collapsed phases, but the transition between them, composed by a line of critical endpoints and a line of tricritical points, separated by the multicritical point, is always continuous. This result is at variance with the simulations for the model, which suggest that part of the line should be a discontinuous transition. Finally, we discuss the connection of the present model with the standard model for the collapse of polymers (self-avoiding self-attracting walks), where the transition between the extended and collapsed phases is a tricritical point.Comment: 34 pages, including 10 figure

    Bethe lattice solution of a model of SAW's with up to 3 monomers per site and no restriction

    Full text link
    In the multiple monomers per site (MMS) model, polymeric chains are represented by walks on a lattice which may visit each site up to K times. We have solved the unrestricted version of this model, where immediate reversals of the walks are allowed (RA) for K = 3 on a Bethe lattice with arbitrary coordination number in the grand-canonical formalism. We found transitions between a non-polymerized and two polymerized phases, which may be continuous or discontinuous. In the canonical situation, the transitions between the extended and the collapsed polymeric phases are always continuous. The transition line is partly composed by tricritical points and partially by critical endpoints, both lines meeting at a multicritical point. In the subspace of the parameter space where the model is related to SASAW's (self-attracting self-avoiding walks), the collapse transition is tricritical. We discuss the relation of our results with simulations and previous Bethe and Husimi lattice calculations for the MMS model found in the literature.Comment: 25 pages, 9 figure
    • …
    corecore