24 research outputs found

    Assessing the cost of global biodiversity and conservation knowledge

    Get PDF
    Knowledge products comprise assessments of authoritative information supported by stan-dards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge productsfor biodiversity conservation, and they are widely used to inform policy and advise decisionmakers and practitioners. However, the financial cost of delivering this information is largelyundocumented. We evaluated the costs and funding sources for developing and maintain-ing four global biodiversity and conservation knowledge products: The IUCN Red List ofThreatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the WorldDatabase of Key Biodiversity Areas. These are secondary data sets, built on primary datacollected by extensive networks of expert contributors worldwide. We estimate that US160million(range:US160million (range: US116–204 million), plus 293 person-years of volunteer time (range: 278–308 person-years) valued at US14million(rangeUS 14 million (range US12–16 million), were invested inthese four knowledge products between 1979 and 2013. More than half of this financingwas provided through philanthropy, and nearly three-quarters was spent on personnelcosts. The estimated annual cost of maintaining data and platforms for three of these knowl-edge products (excluding the IUCN Red List of Ecosystems for which annual costs were notpossible to estimate for 2013) is US6.5millionintotal(range:US6.5 million in total (range: US6.2–6.7 million). We esti-mated that an additional US114millionwillbeneededtoreachpre−definedbaselinesofdatacoverageforallthefourknowledgeproducts,andthatonceachieved,annualmainte−nancecostswillbeapproximatelyUS114 million will be needed to reach pre-defined baselines ofdata coverage for all the four knowledge products, and that once achieved, annual mainte-nance costs will be approximately US12 million. These costs are much lower than those tomaintain many other, similarly important, global knowledge products. Ensuring that biodi-versity and conservation knowledge products are sufficiently up to date, comprehensiveand accurate is fundamental to inform decision-making for biodiversity conservation andsustainable development. Thus, the development and implementation of plans for sustain-able long-term financing for them is critical

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    Serial heart rate changes in rats inoculated by conjunctival instillation of Trypanosoma cruzi obtained from bug faeces Alterações do ritmo cardíaco de ratos infectados pela via conjuntival por Trypanosoma cruzi obtidos de fezes de triatomíneos

    No full text
    The cardiac effects of experimentally induced myocarditis, when the parasite is obtained from mouse blood, are well known. However, the consequences of the infection when the parasites are obtained from bug faeces are less well defined. In the present investigation, we have used the "Y" strain of Trypanosoma cruzi, which was maintained in Rhodnius prolixus by repeated passages in mice. The faeces of 30 infected bugs were collected, the number of parasites counted and 4,000 parasites inoculated by the conjunctival route in 60 rats. Twenty-nine other rats received faeces from noninfected bugs (sham-inoculated controls) and 40 were used as normal controls. The heart rate of the three groups of animals was recorded under general anesthesia with ether. The heart rate, at day 0 pre-inoculation, was similar in the three groups of animals (Controls: 379 ± 27 beats/min Mean ± SD; Sham-inoculated: 366 ± 31; Infected: 351 ± 29) (p> 0.05). In the infected animals, the mean heart rate began to increase significantly by day 12 following infection (375 ± 31), reaching the highest values between days 18 (390 ± 33) and 21 (403 ± 33) and returned to baseline by day 30 (359 ± 28) (p< 0.05). The heart rate changes were statistically different from those observed in the sham-inoculated controls and in the control animals. Therefore, these heart rate changes were provoked by the Trypanosoma cruzi-induced infection. Thus, it appears that irrespective of the source of the parasite and route of inoculation Trypanosoma cruziacute infection provokes a transient sinus tachycardia.<br>Os efeitos da miocardite chagásica experimental, produzida por Trypanosoma cruzi proveniente do sangue de camundongos são bem conhecidos. O mesmo não ocorre quando a inoculação é feita com Trypanosoma cruzi proveniente de fezes do vetor. No presente estudo, usamos a variedade "Y" do Trypanosoma cruzi mantida em Rodhnius prolixus por repetidas passagens em camundongos. As fezes de 30 insetos parasitados foram coletadas e contados os parasitas. O estudo foi desenvolvido em três grupos de ratos. O primeiro, controle, formado por 40 animais, o segundo, por 29 animais que receberam fezes de insetos não infectados (controle falso inoculado) e o terceiro grupo constituído por 60 ratos inoculados com 4.000 parasitas, por via conjuntival. Em todos os animais, após anestesia geral, registrou-se a freqüência cardíaca (FC). Esta, antes da inoculação, era similar nos infectados e nos controles (controle 379 ± 27bpm; falso inoculado: 366 ± 31bpm; infectado 351 ± 29bpm). No 12º dia após a infecção, a FC no grupo chagásico começou a se elevar (375 ± 31bpm) atingindo seu valor máximo entre os dias 18 (390 ± 33bpm) e 21 (403 ± 33bpm). No 33º dia pós-infecção, a FC retornou ao valor basal inicial. Nos grupos controles, não se detectaram alterações da FC. O estudo estatístico mostrou que as variações da FC, no grupo infectado, foram estatisticamente diferentes das detectadas nos outros grupos. Conclui-se que a infecção pelo Trypanosoma cruzi, em ratos, produz taquicardia sinusal transitória, independente da fonte do parasita e da via de inoculação
    corecore