744 research outputs found

    Multi-mobile robot and avoidance obstacle to spatial mapping in indoor environment

    Get PDF
    The advancement of technology and techniques applied to robotics contributes to increasing the quality of life and safety of humanity. One of the most widespread applications of mobile robotics is related to monitoring indoor environments. However, due to factors such as the size of the environment impacting the monitoring response, battery autonomy, and autonomous navigation in environments with unknown obstacles, they are still significant challenges in the diffusion of mobile robotics in these areas. Strategy adopting multiple robots can overcome these challenges. This work presents an approach to use multi-robots in hazardous environments with gas leakage to perform spatial mapping of the gas concentration. Obstacles arranged in the environment are unknown to robots, then a fuzzy control approach is used to avoid the collision. As a result of this paper, spatial mapping of an indoor environment was carried out with multi-robots that reactively react to unknown obstacles considering a point gas leak with Gaussian dispersion.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020. Additionally, this work was supported in part by the National Counsel of Technological and Scientific Development of Brazil (CNPq), in part by the Coordination for the Improvement of Higher Level People (CAPES).info:eu-repo/semantics/publishedVersio

    Fault-tolerance in cyber-physical systems: literature review and challenges

    Get PDF
    Modern industry demands techniques that ensure the operability of its processes, and even though the exponential technological advance in the last two decades in the manufacturing field, failures, waste, and unexpected interruptions are still present in this sector’s daily routine. Within the Industry 4.0 context, fault-tolerant (FT) production systems remain a complex issue and sometimes represent a vulnerable aspect. Faulttolerance techniques dedicated to autonomous and distributed systems, in a cyber-physical system (CPS) perspective, need to be investigated to follow the evolutionary pace of the manufacturing scenarios. This paper overviews these concepts and analyses the current situation in developing FT for CPS systems through a systematic literature review. The paper also discusses the research challenges in this new kind of FT systems due to new distributed architectures and emerging technologies, matching the several fault-tolerance phases.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the Project Scope: UIDB/05757/2020. This work has been partially supported by the European Regional Development Fund (ERDF) through the Interreg Spain-Portugal V-A Program (POCTEP) under grant 0677 DISRUPTIVE 2 E (Intensifying the activity of Digital Innovation Hubs within the PocTep region to boost the development of disruptive and last generation ICTs through cross-border cooperation).info:eu-repo/semantics/publishedVersio

    A linear regression based-approach to collective gas source localization

    Get PDF
    This work addresses the problem of gas leaks and proposes a search strategy for identifying the source of a gas leak within a virtual simulation environment. The research focuses on designing and implementing simulation, control, and gas source search packages using swarm robotics. The simulation employs numerical integration strategies, while the robot swarm control is based on potential fields theory. The location of the gas source using a weighted linear regression strategy is used to estimate the gas concentration gradient, which plays a crucial role in the optimization strategy employed. The paper presents an overview of the key concepts employed and their relevance to different stages of the problem and highlights the main results achieved through the chosen strategies. A significant outcome of this work is the development of reusable software packages applicable to various research contexts in mobile robotics.The project is supported by National Council for Scientific and Technological Development – CNPq (process CNPq 407984/2022-4); Fund for Scientific and Technological Development – FNDCT; Ministry of Science, Technology and Innovations – MCTI of Brazil; Araucaria Foundation; and the General Superintendence of Science, Technology and Higher Education (SETI).info:eu-repo/semantics/publishedVersio

    Multi-robot preemptive task scheduling with fault recovery: a novel approach to automatic logistics of smart factories

    Get PDF
    This paper presents a novel approach for Multi-Robot Task Allocation (MRTA) that introduces priority policies on preemptive task scheduling and considers dependencies between tasks, and tolerates faults. The approach is referred to as Multi-Robot Preemptive Task Scheduling with Fault Recovery (MRPF). It considers the interaction between running processes and their tasks for management at each new event, prioritizing the more relevant tasks without idleness and latency. The benefit of this approach is the optimization of production in smart factories, where autonomous robots are being employed to improve efficiency and increase flexibility. The evaluation of MRPF is performed through experimentation in small-scale warehouse logistics, referred to as Augmented Reality to Enhanced Experimentation in Smart Warehouses (ARENA). An analysis of priority scheduling, task preemption, and fault recovery is presented to show the benefits of the proposed approach.This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and in part by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).info:eu-repo/semantics/publishedVersio

    Bio-inspired distributed sensors to autonomous search of gas leak source

    Get PDF
    This work presents multiple small robots in an unhealthy industrial environment responsible for detecting harmful gases to humans, avoiding possible harmful effects on the body. Mixed reality is widely used, considering that the environment and gases are virtual and real small robots. Essential components for the experiments are virtual, such as gases and BioCyber-Sensors. The results establish the great potential for applications in several areas, such as industrial, biomedical, and services. The entire system was developed based on ROS (Robot Operating System), thus the ease in diversifying different applications and approaches with multiple agents. The main objective of small robots is to guaranty a healthy work environment.info:eu-repo/semantics/publishedVersio

    DepthLiDAR: active segmentation of environment depth map into mobile sensors

    Get PDF
    This paper presents a novel approach for creating virtual LiDAR scanners through the active segmentation of point clouds. The method employs top-view point cloud segmentation in virtual LiDAR sensors that can be applied to the intelligent behavior of autonomous agents. Segmentation is correlated with the visual tracking of the agent for localization in the environmentand point cloud. Virtual LiDARsensors with different characteristicsand positions can then be generated. Thismethod is referred to as the DepthLiDAR approach, and is rigorously evaluated to quantify its performance and determine its advantages and limitations. An extensive set of experiments is conducted using real and virtual LiDAR sensors to compare both approaches. The objective is to propose a novel method to incorporate spatial perception in warehouses, aiming to achieve Industry 4.0. Thus, it is tested in a low-scale warehouse to incorporate realistic features. The analysis of the experiments shows a measurement improvement of 52.24% compared to the conventional LiDAR.This work was supported in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior-Brasil (CAPES)–Finance Code 001 and in part by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).info:eu-repo/semantics/publishedVersio

    Collective gas sensing in a cyber-physical system

    Get PDF
    This paper discusses a novel collective sensing approach using autonomous sensors specially designed to monitor gas leaks and search for gas sources. The proposed collective behavior aims to improve the gas-source search by sharing information between mobile sensors and reducing the risks associated with gas leakage. The group acts as a composite sensor that can move independently to search for an optimal sensing zone. The autonomous searching behavior is bio-inspired by colonies of bacteria that continuously seek energy sources throughout their existence. Each sensor makes its own autonomous search decision, considering the group sense, to move in the direction of a better energy source. The collective approach is based on autonomous agents sharing information to achieve a collective sense of gas perception and utilizes more intelligent searching. The method is evaluated in a cyber-physical system specially developed to safely experiment with gases and mobile sensors while reproducing the realistic dynamic behavior of the gas. Experiments are performed to clarify the collective gas-sensing contributions, and the gas search is compared through multiple mobile sensors with and without collective sensing. The proposed approach is evaluated in an unhealthy environment to elucidate its effectiveness. In addition to presenting the related differences between collective and individual sensory approaches, this work contributes with analyzes of the scalability of mobile gas sensing systems. This work also contributed as a simulated semi-physical experimental system to test algorithms' performance before applying it to practice. © 2001-2012 IEEEinfo:eu-repo/semantics/publishedVersio

    Cooperative UAV–UGV autonomous power pylon inspection: an investigation of cooperative outdoor vehicle positioning architecture

    Get PDF
    Realizing autonomous inspection, such as that of power distribution lines, through unmanned aerial vehicle (UAV) systems is a key research domain in robotics. In particular, the use of autonomous and semi-autonomous vehicles to execute the tasks of an inspection process can enhance the efficacy and safety of the operation; however, many technical problems, such as those pertaining to the precise positioning and path following of the vehicles, robust obstacle detection, and intelligent control, must be addressed. In this study, an innovative architecture involving an unmanned aircraft vehicle (UAV) and an unmanned ground vehicle (UGV) was examined for detailed inspections of power lines. In the proposed strategy, each vehicle provides its position information to the other, which ensures a safe inspection process. The results of real-world experiments indicate a satisfactory performance, thereby demonstrating the feasibility of the proposed approach.This research was funded by National Counsel of Technological and Scientific Development of Brazil (CNPq). The authors thank the National Counsel of Technological and Scientific Development of Brazil (CNPq); Coordination for the Improvement of Higher Level People (CAPES); and the Brazilian Ministry of Science, Technology, Innovation, and Communication (MCTIC). The authors would also like express their deepest gratitude to Control Robotics for sharing the Pioneer P3 robot for the experiments. Thanks to Leticia Cantieri for editing the experiment video.info:eu-repo/semantics/publishedVersio
    corecore