2,901 research outputs found

    On the high coherence of kilo-Hz Quasi-Periodic Oscillations

    Full text link
    We have carried out a systematic study of the properties of the kilo-Hertz quasi-periodic oscillations (QPO) observed in the X-ray emission of the neutron star low-mass X-ray binary 4U1608-52, using archival data obtained with the Rossi X-ray Timing Explorer. We have investigated the quality factor, Q, of the oscillations (defined as the ratio of the frequency of the QPO peak to its full width at half maximum). In order to minimise the effect of long-term frequency drifts, power spectra were computed over the shortest times permitted by the data statistics. We show that the high Q of ~200 reported by Berger et al. (1996) for the lower frequency kilo-Hz QPO in one of their observations is by no means exceptional, as we observe a mean Q value in excess of 150 in 14 out of the 21 observations analysed and Q can remain above 200 for thousands of seconds. The frequency of the QPO varies over the wide range 560--890 Hz and we find a systematic trend for the coherence time of the QPO, estimated as tau=Q /(pi nu), to increase with the frequency, up to a maximum level at ~ 800 Hz, beyond which it appears to decrease, at frequencies where the QPO weakens. There is a more complex relationship between tau and the QPO root mean squared amplitude (RMS), in which positive and negative correlations can be found. A higher-frequency QPO, revealed by correcting for the frequency drift of the 560-890 Hz one, has a much lower Q (~10) which does not follow the same pattern. We discuss these results in the framework of competing QPO models and show that those involving clumps orbiting within or above the accretion disk are ruled out.Comment: Accepted for publication in MNRAS, 8 pages, 6 figures, 3 Table

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.

    Design of light concentrators for Cherenkov telescope observatories

    Full text link
    The Cherenkov Telescope Array (CTA) will be the largest cosmic gamma ray detector ever built in the world. It will be installed at two different sites in the North and South hemispheres and should be operational for about 30 years. In order to cover the desired energy range, the CTA is composed of typically 50-100 collecting telescopes of various sizes (from 6 to 24-m diameters). Most of them are equipped with a focal plane camera consisting of 1500 to 2000 Photomultipliers (PM) equipped with light concentrating optics, whose double function is to maximize the amount of Cherenkov light detected by the photo-sensors, and to block any stray light originating from the terrestrial environment. Two different optical solutions have been designed, respectively based on a Compound Parabolic Concentrator (CPC), and on a purely dioptric concentrating lens. In this communication are described the technical specifications, optical designs and performance of the different solutions envisioned for all these light concentrators. The current status of their prototyping activities is also given

    Simultaneous BeppoSAX and Rossi X-ray Timing Explorer observations of 4U1812-12

    Get PDF
    4U1812-12 is a faint persistent and weakly variable neutron star X-ray binary. It was observed by BeppoSAX between April 20th and 21st, 2000 in a hard spectral state with a bolometric luminosity of ~2x10^36 ergs/s. Its broad band energy spectrum is characterized by the presence of a hard X-ray tail extending above ~100 keV. It can be represented as the sum of a dominant hard Comptonized component (electron temperature of ~36 keV and optical depth ~3) and a weak soft component. The latter component which can be fitted with a blackbody of about 0.6 keV and equivalent radius of ~2 km is likely to originate from the neutron star surface. We also report on the first measurement of the power density spectrum of the source rapid X-ray variability, as recorded during a simultaneous snapshot observation performed by the Rossi X-ray Timing Explorer. As expected for a neutron star system in such hard spectral state, its power density spectrum is characterized by the presence of a ~0.7 Hz low frequency quasi-periodic oscillation together with three broad noise components, one of which extends above ~200 Hz.Comment: 6 pages, 3 figures, accepted for publication in A&
    • …
    corecore