90 research outputs found
Solar Neutrino Constraints on the BBN Production of Li
Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10}
\eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN)
calculations can make relatively accurate predictions of the abundances of the
light element isotopes which can be tested against observational abundance
determinations. At this value of \eta, the Li7 abundance is predicted to be
significantly higher than that observed in low metallicity halo dwarf stars.
Among the possible resolutions to this discrepancy are 1) Li7 depletion in the
atmosphere of stars; 2) systematic errors originating from the choice of
stellar parameters - most notably the surface temperature; and 3) systematic
errors in the nuclear cross sections used in the nucleosynthesis calculations.
Here, we explore the last possibility, and focus on possible systematic errors
in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7
production channel in BBN. The absolute value of the cross section for this key
reaction is known relatively poorly both experimentally and theoretically. The
agreement between the standard solar model and solar neutrino data thus
provides additional constraints on variations in the cross section (S_{34}).
Using the standard solar model of Bahcall, and recent solar neutrino data, we
can exclude systematic S_{34} variations of the magnitude needed to resolve the
BBN Li7 problem at > 95% CL. Additional laboratory data on
He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar
neutrinos, particularly if care is taken in determining the absolute cross
section and its uncertainties. Nevertheless, it already seems that this
``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions
are briefly discussed.Comment: 21 pages, 3 ps figure
Cosmological Implications of Neutrinos
The lectures describe several cosmological effects produced by neutrinos.
Upper and lower cosmological limits on neutrino mass are derived. The role that
neutrinos may play in formation of large scale structure of the universe is
described and neutrino mass limits are presented. Effects of neutrinos on
cosmological background radiation and on big bang nucleosynthesis are
discussed. Limits on the number of neutrino flavors and mass/mixing are given.Comment: 41 page, 7 figures; lectures presented at ITEP Winter School,
February, 2002; to be published in the Proceeding
The Formation of Cosmic Structures in a Light Gravitino Dominated Universe
We analyse the formation of cosmic structures in models where the dark matter
is dominated by light gravitinos with mass of eV -- 1 keV, as predicted
by gauge-mediated supersymmetry (SUSY) breaking models. After evaluating the
number of degrees of freedom at the gravitinos decoupling (), we compute
the transfer function for matter fluctuations and show that gravitinos behave
like warm dark matter (WDM) with free-streaming scale comparable to the galaxy
mass scale. We consider different low-density variants of the WDM model, both
with and without cosmological constant, and compare the predictions on the
abundances of neutral hydrogen within high-redshift damped Ly-- systems
and on the number density of local galaxy clusters with the corresponding
observational constraints. We find that none of the models satisfies both
constraints at the same time, unless a rather small value (\mincir
0.4) and a rather large Hubble parameter (\magcir 0.9) is assumed.
Furthermore, in a model with warm + hot dark matter, with hot component
provided by massive neutrinos, the strong suppression of fluctuation on scales
of \sim 1\hm precludes the formation of high-redshift objects, when the
low-- cluster abundance is required. We conclude that all different variants
of a light gravitino DM dominated model show strong difficulties for what
concerns cosmic structure formation.
This gives a severe cosmological constraint on the gauge-mediated SUSY
breaking scheme.Comment: 28 pages,Latex, submitted for publication to Phys.Rev.
On a Light Spinless Particle Coupled to Photons
A pseudoscalar or scalar particle that couples to two photons but not
to leptons, quarks and nucleons would have effects in most of the experiments
searching for axions, since these are based on the coupling.
We examine the laboratory, astrophysical and cosmological constraints on
and study whether it may constitute a substantial part of the dark matter. We
also generalize the interactions to possess gauge
invariance, and analyze the phenomenological implications.Comment: LaTex, 20p., 6 figures. Changes in sections 4, 5 and figure 2, our
bounds are now more stringent. To be published in Physical Review
Synergistic warm inflation
We consider an alternative warm inflationary scenario in which scalar
fields coupled to a dissipative matter fluid cooperate to produce power--law
inflation. The scalar fields are driven by an exponential potential and the
bulk dissipative pressure coefficient is linear in the expansion rate. We find
that the entropy of the fluid attains its asymptotic value in a characteristic
time proportional to the square of the number of fields. This scenario remains
nearly isothermal along the inflationary stage. The perturbations in energy
density and entropy are studied in the long--wavelength regime and seen to grow
roughly as the square of the scale factor. They are shown to be compatible with
COBE measurements of the fluctuations in temperature of the CMB.Comment: 13 pages, Revtex 3 To be published in Physical Review
Turbulent Thermalization
We study, analytically and with lattice simulations, the decay of coherent
field oscillations and the subsequent thermalization of the resulting
stochastic classical wave-field. The problem of reheating of the Universe after
inflation constitutes our prime motivation and application of the results. We
identify three different stages of these processes. During the initial stage of
``parametric resonance'', only a small fraction of the initial inflaton energy
is transferred to fluctuations in the physically relevant case of sufficiently
large couplings. A major fraction is transfered in the prompt regime of driven
turbulence. The subsequent long stage of thermalization classifies as free
turbulence. During the turbulent stages, the evolution of particle distribution
functions is self-similar. We show that wave kinetic theory successfully
describes the late stages of our lattice calculation. Our analytical results
are general and give estimates of reheating time and temperature in terms of
coupling constants and initial inflaton amplitude.Comment: 27 pages, 13 figure
Can induced gravity isotropize Bianchi I, V, or IX Universes?
We analyze if Bianchi I, V, and IX models in the Induced Gravity (IG) theory
can evolve to a Friedmann--Roberson--Walker (FRW) expansion due to the
non--minimal coupling of gravity and the scalar field. The analytical results
that we found for the Brans-Dicke (BD) theory are now applied to the IG theory
which has ( being the square ratio of the Higgs to
Planck mass) in a cosmological era in which the IG--potential is not
significant. We find that the isotropization mechanism crucially depends on the
value of . Its smallness also permits inflationary solutions. For the
Bianch V model inflation due to the Higgs potential takes place afterwads, and
subsequently the spontaneous symmetry breaking (SSB) ends with an effective FRW
evolution. The ordinary tests of successful cosmology are well satisfied.Comment: 24 pages, 5 figures, to be published in Phys. Rev. D1
Planck-scale quintessence and the physics of structure formation
In a recent paper we considered the possibility of a scalar field providing
an explanation for the cosmic acceleration. Our model had the interesting
properties of attractor-like behavior and having its parameters of O(1) in
Planck units. Here we discuss the effect of the field on large scale structure
and CMB anisotropies. We show how some versions of our model inspired by
"brane" physics have novel features due to the fact that the scalar field has a
significant role over a wider range of redshifts than for typical "dark energy"
models. One of these features is the additional suppression of the formation of
large scale structure, as compared with cosmological constant models. In light
of the new pressures being placed on cosmological parameters (in particular
H_0) by CMB data, this added suppression allows our "brane" models to give
excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
Coset Space Dimensional Reduction and Wilson Flux Breaking of Ten-Dimensional N=1, E(8) Gauge Theory
We consider a N=1 supersymmetric E(8) gauge theory, defined in ten dimensions
and we determine all four-dimensional gauge theories resulting from the
generalized dimensional reduction a la Forgacs-Manton over coset spaces,
followed by a subsequent application of the Wilson flux spontaneous symmetry
breaking mechanism. Our investigation is constrained only by the requirements
that (i) the dimensional reduction leads to the potentially phenomenologically
interesting, anomaly free, four-dimensional E(6), SO(10) and SU(5) GUTs and
(ii) the Wilson flux mechanism makes use only of the freely acting discrete
symmetries of all possible six-dimensional coset spaces.Comment: 45 pages, 2 figures, 10 tables, uses xy.sty, longtable.sty,
ltxtable.sty, (a shorter version will be published in Eur. Phys. J. C
Oscillation effects on neutrino decoupling in the early universe
In the early universe, neutrinos decouple from equilibrium with the
electromagnetic plasma at a temperature which is only slightly higher than the
temperature where electrons and positrons annihilate. Therefore neutrinos to
some extent share in the entropy transfer from e^+e^- to other species, and
their final temperature is slightly higher than the canonical value T_nu =
(4/11)^{1/3} T_gamma. We study neutrino decoupling in the early universe with
effects of neutrino oscillations included, and find that the change in neutrino
energy density from e^+ e^- annihilations can be about 2-3% higher if
oscillation are included. The primordial helium abundance can be changed by as
much as 1.5 x 10^-4 by neutrino oscillations.Comment: minor changes, matches version to appear in PR
- …