1,332 research outputs found

    Colorectal cancer: advances in prevention and early detection

    Get PDF
    Colorectal cancer (CRC) is currently the fourth leading cause of cancer death worldwide. While mortality rates are in decline in most westernised countries, global estimates predict that CRC incidence rates and the overall number of CRC-related deaths are set to rise by 77% and 80%, respectively, by 2030. The development of CRC is multifactorial, and risk factors include various lifestyle, genetic, and environmental factors. It has been estimated that at least half of CRC cases could be prevented by a reduction in known modifiable lifestyle-related risk factors. Further reductions in CRC incidence and mortality can be achieved through screening, but the uptake of screening varies across different sectors of the population. This special issue comprises articles highlighting issues in the prevention, early diagnosis, and treatment of CRC

    In-depth analysis of the Naming Game dynamics: the homogeneous mixing case

    Get PDF
    Language emergence and evolution has recently gained growing attention through multi-agent models and mathematical frameworks to study their behavior. Here we investigate further the Naming Game, a model able to account for the emergence of a shared vocabulary of form-meaning associations through social/cultural learning. Due to the simplicity of both the structure of the agents and their interaction rules, the dynamics of this model can be analyzed in great detail using numerical simulations and analytical arguments. This paper first reviews some existing results and then presents a new overall understanding.Comment: 30 pages, 19 figures (few in reduced definition). In press in IJMP

    Temporal trends in mode, site and stage of presentation with the introduction of colorectal cancer screening: a decade of experience from the West of Scotland

    Get PDF
    background:  Population colorectal cancer screening programmes have been introduced to reduce cancer-specific mortality through the detection of early-stage disease. The present study aimed to examine the impact of screening introduction in the West of Scotland. methods:  Data on all patients with a diagnosis of colorectal cancer between January 2003 and December 2012 were extracted from a prospectively maintained regional audit database. Changes in mode, site and stage of presentation before, during and after screening introduction were examined. results:  In a population of 2.4 million, over a 10-year period, 14 487 incident cases of colorectal cancer were noted. Of these, 7827 (54%) were males and 7727 (53%) were socioeconomically deprived. In the postscreening era, 18% were diagnosed via the screening programme. There was a reduction in both emergency presentation (20% prescreening vs 13% postscreening, P0.001) and the proportion of rectal cancers (34% prescreening vs 31% pos-screening, P0.001) over the timeframe. Within non-metastatic disease, an increase in the proportion of stage I tumours at diagnosis was noted (17% prescreening vs 28% postscreening, P0.001). conclusions:  Within non-metastatic disease, a shift towards earlier stage at diagnosis has accompanied the introduction of a national screening programme. Such a change should lead to improved outcomes in patients with colorectal cancer

    Hofstadter butterflies of carbon nanotubes: Pseudofractality of the magnetoelectronic spectrum

    Get PDF
    The electronic spectrum of a two-dimensional square lattice in a perpendicular magnetic field has become known as the Hofstadter butterfly [Hofstadter, Phys. Rev. B 14, 2239 (1976).]. We have calculated quasi-one-dimensional analogs of the Hofstadter butterfly for carbon nanotubes (CNTs). For the case of single-wall CNTs, it is straightforward to implement magnetic fields parallel to the tube axis by means of zone folding in the graphene reciprocal lattice. We have also studied perpendicular magnetic fields which, in contrast to the parallel case, lead to a much richer, pseudofractal spectrum. Moreover, we have investigated magnetic fields piercing double-wall CNTs and found strong signatures of interwall interaction in the resulting Hofstadter butterfly spectrum, which can be understood with the help of a minimal model. Ubiquitous to all perpendicular magnetic field spectra is the presence of cusp catastrophes at specific values of energy and magnetic field. Resolving the density of states along the tube circumference allows recognition of the snake states already predicted for nonuniform magnetic fields in the two-dimensional electron gas. An analytic model of the magnetic spectrum of electrons on a cylindrical surface is used to explain some of the results.Comment: 14 pages, 12 figures update to published versio

    Sharp transition towards shared vocabularies in multi-agent systems

    Get PDF
    What processes can explain how very large populations are able to converge on the use of a particular word or grammatical construction without global coordination? Answering this question helps to understand why new language constructs usually propagate along an S-shaped curve with a rather sudden transition towards global agreement. It also helps to analyze and design new technologies that support or orchestrate self-organizing communication systems, such as recent social tagging systems for the web. The article introduces and studies a microscopic model of communicating autonomous agents performing language games without any central control. We show that the system undergoes a disorder/order transition, going trough a sharp symmetry breaking process to reach a shared set of conventions. Before the transition, the system builds up non-trivial scale-invariant correlations, for instance in the distribution of competing synonyms, which display a Zipf-like law. These correlations make the system ready for the transition towards shared conventions, which, observed on the time-scale of collective behaviors, becomes sharper and sharper with system size. This surprising result not only explains why human language can scale up to very large populations but also suggests ways to optimize artificial semiotic dynamics.Comment: 12 pages, 4 figure

    Full sphere hydrodynamic and dynamo benchmarks

    Get PDF
    Convection in planetary cores can generate fluid flow and magnetic fields, and a number of sophisticated codes exist to simulate the dynamic behaviour of such systems. We report on the first community activity to compare numerical results of computer codes designed to calculate fluid flow within a whole sphere. The flows are incompressible and rapidly rotating and the forcing of the flow is either due to thermal convection or due to moving boundaries. All problems defined have solutions that allow easy comparison, since they are either steady, slowly drifting or perfectly periodic. The first two benchmarks are defined based on uniform internal heating within the sphere under the Boussinesq approximation with boundary conditions that are uniform in temperature and stress-free for the flow. Benchmark 1 is purely hydrodynamic, and has a drifting solution. Benchmark 2 is a magnetohydrodynamic benchmark that can generate oscillatory, purely periodic, flows and magnetic fields. In contrast, Benchmark 3 is a hydrodynamic rotating bubble benchmark using no slip boundary conditions that has a stationary solution. Results from a variety of types of code are reported, including codes that are fully spectral (based on spherical harmonic expansions in angular coordinates and polynomial expansions in radius), mixed spectral and finite difference, finite volume, finite element and also a mixed Fourier–finite element code. There is good agreement between codes. It is found that in Benchmarks 1 and 2, the approximation of a whole sphere problem by a domain that is a spherical shell (a sphere possessing an inner core) does not represent an adequate approximation to the system, since the results differ from whole sphere results

    A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems

    Full text link
    In this paper we present a methodological framework that meets novel requirements emerging from upcoming types of accelerated and highly configurable neuromorphic hardware systems. We describe in detail a device with 45 million programmable and dynamic synapses that is currently under development, and we sketch the conceptual challenges that arise from taking this platform into operation. More specifically, we aim at the establishment of this neuromorphic system as a flexible and neuroscientifically valuable modeling tool that can be used by non-hardware-experts. We consider various functional aspects to be crucial for this purpose, and we introduce a consistent workflow with detailed descriptions of all involved modules that implement the suggested steps: The integration of the hardware interface into the simulator-independent model description language PyNN; a fully automated translation between the PyNN domain and appropriate hardware configurations; an executable specification of the future neuromorphic system that can be seamlessly integrated into this biology-to-hardware mapping process as a test bench for all software layers and possible hardware design modifications; an evaluation scheme that deploys models from a dedicated benchmark library, compares the results generated by virtual or prototype hardware devices with reference software simulations and analyzes the differences. The integration of these components into one hardware-software workflow provides an ecosystem for ongoing preparative studies that support the hardware design process and represents the basis for the maturity of the model-to-hardware mapping software. The functionality and flexibility of the latter is proven with a variety of experimental results

    Calibration of optimal execution of financial transactions in the presence of transient market impact

    Full text link
    Trading large volumes of a financial asset in order driven markets requires the use of algorithmic execution dividing the volume in many transactions in order to minimize costs due to market impact. A proper design of an optimal execution strategy strongly depends on a careful modeling of market impact, i.e. how the price reacts to trades. In this paper we consider a recently introduced market impact model (Bouchaud et al., 2004), which has the property of describing both the volume and the temporal dependence of price change due to trading. We show how this model can be used to describe price impact also in aggregated trade time or in real time. We then solve analytically and calibrate with real data the optimal execution problem both for risk neutral and for risk averse investors and we derive an efficient frontier of optimal execution. When we include spread costs the problem must be solved numerically and we show that the introduction of such costs regularizes the solution.Comment: 31 pages, 8 figure

    A Crystal Structure of the Bifunctional Antibiotic Simocyclinone D8, Bound to DNA Gyrase

    Get PDF
    Simocyclinones are bifunctional antibiotics that inhibit bacterial DNA gyrase by preventing DNA binding to the enzyme. We report the crystal structure of the complex formed between the N-terminal domain of the Escherichia coli gyrase A subunit and simocyclinone D8, revealing two binding pockets that separately accommodate the aminocoumarin and polyketide moieties of the antibiotic. These are close to, but distinct from, the quinolone-binding site, consistent with our observations that several mutations in this region confer resistance to both agents. Biochemical studies show that the individual moieties of simocyclinone D8 are comparatively weak inhibitors of gyrase relative to the parent compound, but their combination generates a more potent inhibitor. Our results should facilitate the design of drug molecules that target these unexploited binding pockets
    corecore