12 research outputs found

    The Mesoarchaean Akia terrane, West Greenland, revisited : new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    Get PDF
    NJG thanks Australian Research Council grant FL160100168 for financial support.The northern part of the North Atlantic Craton (NAC) in southern West Greenland comprises a large tract of exposed Meso-Neoarchaean continental crust, divided into the ca 3300–2900 Ma Akia and ca 2900–2500 Ma Tuno terranes. We combine aeromagnetic, stream sediment geochemical, new litho-chemical and zircon geochronological data with previously published data to re-evaluate the crustal architecture and evolution of the Akia terrane and its boundary towards the Tuno terrane. The previously recognised, but overlooked, Alanngua complex, situated between the Akia and Tuno terranes is bounded by aeromagnetic lineaments interpreted as Neoarchaean shear zones and has a distinct spectrum of Neoarchaean magmatic and metamorphic zircon ages that are rare in the Akia terrane. The Alanngua complex comprises components derived from both the Akia and Tuno terranes and is interpreted as a tectonic melange created during the Neoarchaean assembly of the NAC. Within the Akia terrane, the chemistry of orthogneiss samples indicate that a large percentage is too mafic to classify as TTG s.s., implying that not only partial melting of mafic crust, but also some yet unaddressed mantle involvement is necessary in their formation. Previous models for the generation of the ca. 3015–2990 Ma quartz-dioritic Finnefjeld and Taserssuaq complexes conflict with their geochemical variation. The complexes are spatially associated with strong aeromagnetic responses that are interpreted to reflect a large gabbro-diorite intrusion, and we propose that the protoliths of the Finnefjeld and Taserssuaq complexes are genetically linked to such intrusion. Formed at same time are carbonatite, high-Mg gabbro and tonalite-trondhjemite, and we propose that this wide spectrum of rocks could have formed by lithospheric and crustal melting in response to asthenospheric upwelling possibly in an extensional setting. Periods of extensive magmatism in the Akia terrane were previously recognised at ca. 3220-3180 Ma and 3070-2970 Ma. We now subdivide the latter period into three episodes: juvenile basaltic-andesitic volcanism at 3070–3050 Ma; tonalitic and dioritic plutonism at 3050–3020 Ma, and gabbroic-dioritic plus tonalitic-trondhjemitic plutonism at 3020–2985 Ma. This last episode was immediately followed by crustal reworking during collision at 2980–2950 Ma.Publisher PDFPeer reviewe

    Differentiating between inherited and autocrystic zircon in granitoids

    Get PDF
    The Maniitsoq map project is supported by the Ministry of Mineral Resources, Government of Greenland. The LA-ICP-MS instruments in the JdLC were funded via an Australian Geophysical Observing System grant provided to AuScope Pty Ltd. by the AQ44 Australian Education Investment Fund program.Inherited zircon, crystals that did not form in situ from their host magma but were incorporated from either the source region or assimilated from the wall-rock, is common but can be difficult to identify. Age, chemical and/or textural dissimilarity to the youngest zircon fraction are the primary mechanisms of distinguishing such grains. However, in Zr-undersaturated magmas, the entire zircon population may be inherited and, if not identifiable via textural constraints, can lead to erroneous interpretation of magmatic crystallization age and magma source. Here, we present detailed field mapping of cross-cutting relationships, whole-rock geochemistry and zircon textural, U-Pb and trace element data of trondhjemite, granodiorite and granite from two localities in a complex Archean gneiss terrane in southwest Greenland, which reveal cryptic zircon inheritance. Zircon textural, U–Pb and trace element data demonstrate that, in both localities, trondhjemite is the oldest rock (3011 ± 5 Ma, 2σ), which is intruded by granodiorite (2978 ± 4 Ma, 2σ). However, granite intrusions, constrained by cross-cutting relationships as the youngest component, only contain inherited zircon derived from trondhjemite and granodiorite based on ages and trace element concentrations. Without age constraints on the older two lithologies, it would be tempting to consider the youngest zircon fraction as recording crystallization of the granite but this would be erroneous. Furthermore, whole-rock geochemistry indicates that the granite contains only 6 µg g-1 Zr, extremely low for a granitoid with ∼77 wt. % SiO2. Such low Zr concentration explains the lack of autocrystic zircon in the granite. We expand on a differentiation tool that uses Th/U ratios in zircon versus that in the whole rock to aid in the identification of inherited zircon. This work emphasizes the need for field observations, geochemistry, grain characterization, and precise geochronology to accurately determine igneous crystallization ages and differentiate between inherited and autocrystic zircon.PostprintPeer reviewe

    Regional zircon U-Pb geochronology for the Maniitsoq region, southwest Greenland

    Get PDF
    The Ministry of Mineral Resources, Government of Greenland, funded this project. Analyses in the JdLC GeoHistory Facility were enabled by instrumentation supported by AuScope (auscope.org.au) and the Australian Government via the National Collaborative Research Infrastructure Strategy. The Tescan Mira3 FEG-SEM was funded through the Australian Research Council LIEF program.Zircon U-Pb geochronology places high-temperature geological events into temporal context. Here, we present a comprehensive zircon U-Pb geochronology dataset for the Meso- to Neoarchean Maniitsoq region in southwest Greenland, which includes the Akia Terrane, Tuno Terrane, and the intervening Alanngua Complex. The magmatic and metamorphic processes recorded in these terranes straddle a key change-point in early Earth geodynamics. This dataset comprises zircon U-Pb ages for 121 samples, including 46 that are newly dated. A principal crystallization peak occurs across all three terranes at ca. 3000 Ma, with subordinate crystallization age peaks at 3200 Ma (Akia Terrane and Alanngua Complex only), 2720 Ma and 2540 Ma. Metamorphic age peaks occur at 2990 Ma, 2820-2700 Ma, 2670-2600 Ma and 2540 Ma. Except for one sample, all dated metamorphic zircon growth after the Neoarchean occurred in the Alanngua Complex or within 20 km of its boundaries. This U-Pb dataset provides an important resource for addressing Earth Science topics as diverse as crustal evolution, fluid-rock interaction and mineral deposit genesis.Publisher PDFPeer reviewe

    Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises

    No full text
    The emplacement of large igneous provinces (LIPs) has been linked to catastrophic mass extinctions in Earth’s history, but some LIPs are only associated with less severe oceanic anoxic events, and others have negligible environmental effects. Although it is widely accepted that massive magma outpouring can affect the environment through volatile degassing, it remains debated what controls the severity of environmental crises. Here, we demonstrate that the second-most-voluminous Phanerozoic LIP, the Kerguelen LIP, may have contributed to the early Aptian oceanic anoxic event 1a, a global event previously believed to have been caused by the Ontong Java LIP. Geochronological data show that the earliest eruptions of the Kerguelen LIP preceded the onset of oceanic anoxic event 1a by at least ∼5 million years. Analyses of CO2 abundances in melt inclusions combined with Monte Carlo simulations reveal that the volume and degassing rate of CO2 emissions from the Kerguelen LIP are an order of magnitude lower compared to LIPs that caused severe mass extinctions. We propose that the severity of volcanism-related environmental and biotic perturbations is positively correlated with the volume and rate of CO2 emissions. Our results highlight the significant importance of reducing and slowing down CO2 emission in preventing future disastrous environmental consequences

    The Mesoarchaean Akia terrane, West Greenland, revisited:new insights based on spatial integration of geophysics, field observation, geochemistry and geochronology

    No full text
    The northern part of the North Atlantic Craton (NAC) in southern West Greenland comprises a large tract of exposed Meso-Neoarchaean continental crust, divided into the ca 3300–2900 Ma Akia and ca 2900–2500 Ma Tuno terranes. We combine aeromagnetic, stream sediment geochemical, new litho-chemical and zircon geochronological data with previously published data to re-evaluate the crustal architecture and evolution of the Akia terrane and its boundary towards the Tuno terrane.The previously recognised, but overlooked, Alanngua complex, situated between the Akia and Tuno terranes is bounded by aeromagnetic lineaments interpreted as Neoarchaean shear zones and has a distinct spectrum of Neoarchaean magmatic and metamorphic zircon ages that are rare in the Akia terrane. The Alanngua complex comprises components derived from both the Akia and Tuno terranes and is interpreted as a tectonic melange created during the Neoarchaean assembly of the NAC.Within the Akia terrane, the chemistry of orthogneiss samples indicate that a large percentage is too mafic to classify as TTG s.s., implying that not only partial melting of mafic crust, but also some yet unaddressed mantle involvement is necessary in their formation. Previous models for the generation of the ca. 3015–2990 Ma quartz-dioritic Finnefjeld and Taserssuaq complexes conflict with their geochemical variation. The complexes are spatially associated with strong aeromagnetic responses that are interpreted to reflect a large gabbro-diorite intrusion, and we propose that the protoliths of the Finnefjeld and Taserssuaq complexes are genetically linked to such intrusion. Formed at same time are carbonatite, high-Mg gabbro and tonalite-trondhjemite, and we propose that this wide spectrum of rocks could have formed by lithospheric and crustal melting in response to asthenospheric upwelling possibly in an extensional setting.Periods of extensive magmatism in the Akia terrane were previously recognised at ca. 3220-3180 Ma and 3070-2970 Ma. We now subdivide the latter period into three episodes: juvenile basaltic-andesitic volcanism at 3070–3050 Ma; tonalitic and dioritic plutonism at 3050–3020 Ma, and gabbroic-dioritic plus tonalitic-trondhjemitic plutonism at 3020–2985 Ma. This last episode was immediately followed by crustal reworking during collision at 2980–2950 Ma.</p

    Cryptic geological histories accessed through entombed and matrix geochronometers in dykes

    No full text
    Abstract Deep geology of ancient continental crust can be difficult to access, with direct observation restricted to limited exposures. The age and composition of hidden geology can be gleaned from indirect isotopic modelling or via detrital minerals within overlying basins. Here we present an alternative, where direct grain sampling of ancient components within the South West Terrane, Yilgarn Craton, by a Proterozoic dyke evidences deep intact, or detritus from, Paleoarchean crust. U–Pb geochronology on this dyke reveals c. 3440 Ma zircon inclusions within titanite. This zircon was protected from overprinting fluids that obliterated unshielded crystals. Similar ancient zircon is present within recent sediment from the Swan-Avon river, which drains the terrane. The most parsimonious interpretation is that the dyke is 1390 Ma. Sequential overprinting is also recorded, with titanite preserving primary crystallization and c. 1000 Ma Pinjarra Orogeny-related overprinting. In contrast, apatite preserves c. 210 Ma ages, correlated with denudation of sedimentary cover

    Differentiating between inherited and autocrystic zircon in granitoids

    No full text
    Inherited zircon, crystals that did not form in situ from their host magma but were incorporated from either the source region or assimilated from the wall-rock, is common but can be difficult to identify. Age, chemical and/or textural dissimilarity to the youngest zircon fraction are the primary mechanisms of distinguishing such grains. However, in Zr-undersaturated magmas, the entire zircon population may be inherited and, if not identifiable via textural constraints, can lead to erroneous interpretation of magmatic crystallization age and magma source. Here, we present detailed field mapping of cross-cutting relationships, whole-rock geochemistry and zircon textural, U-Pb and trace element data of trondhjemite, granodiorite and granite from two localities in a complex Archean gneiss terrane in southwest Greenland, which reveal cryptic zircon inheritance. Zircon textural, U–Pb and trace element data demonstrate that, in both localities, trondhjemite is the oldest rock (3011 ± 5 Ma, 2σ), which is intruded by granodiorite (2978 ± 4 Ma, 2σ). However, granite intrusions, constrained by cross-cutting relationships as the youngest component, only contain inherited zircon derived from trondhjemite and granodiorite based on ages and trace element concentrations. Without age constraints on the older two lithologies, it would be tempting to consider the youngest zircon fraction as recording crystallization of the granite but this would be erroneous. Furthermore, whole-rock geochemistry indicates that the granite contains only 6 µg g-1 Zr, extremely low for a granitoid with ∼77 wt. % SiO2. Such low Zr concentration explains the lack of autocrystic zircon in the granite. We expand on a differentiation tool that uses Th/U ratios in zircon versus that in the whole rock to aid in the identification of inherited zircon. This work emphasizes the need for field observations, geochemistry, grain characterization, and precise geochronology to accurately determine igneous crystallization ages and differentiate between inherited and autocrystic zircon

    Regional zircon U-Pb geochronology for the Maniitsoq region, southwest Greenland

    No full text
    Zircon U-Pb geochronology places high-temperature geological events into temporal context. Here, we present a comprehensive zircon U-Pb geochronology dataset for the Meso- to Neoarchean Maniitsoq region in southwest Greenland, which includes the Akia Terrane, Tuno Terrane, and the intervening Alanngua Complex. The magmatic and metamorphic processes recorded in these terranes straddle a key change-point in early Earth geodynamics. This dataset comprises zircon U-Pb ages for 121 samples, including 46 that are newly dated. A principal crystallization peak occurs across all three terranes at ca. 3000 Ma, with subordinate crystallization age peaks at 3200 Ma (Akia Terrane and Alanngua Complex only), 2720 Ma and 2540 Ma. Metamorphic age peaks occur at 2990 Ma, 2820-2700 Ma, 2670-2600 Ma and 2540 Ma. Except for one sample, all dated metamorphic zircon growth after the Neoarchean occurred in the Alanngua Complex or within 20 km of its boundaries. This U-Pb dataset provides an important resource for addressing Earth Science topics as diverse as crustal evolution, fluid-rock interaction and mineral deposit genesis

    Supporting information for 'A two-stage cooling of the Georgetown Inlier in NE Australia after 1.6 Ga Nuna assembly: new insights into the late-orogenic crustal tectono-magmatic history'

    No full text
    This document contains the supporting information for the manuscript 'A two-stage cooling of the Georgetown Inlier in NE Australia after 1.6 Ga Nuna assembly: new insights into the late-orogenic crustal tectono-magmatic history' we submitted to JGR: Solid Earth.In this document, we provide 40Ar/39Ar analytical data, previously argon results, and relative parameters for mineral closure temperature calculation and Monte Carlo simulation. Detail microscope images of the dated samples are also provided. </div
    corecore