187 research outputs found

    OPA1 functions in mitochondria and dysfunctions in optic nerve

    Get PDF
    OPA1 is the major gene responsible for Dominant Optic Atrophy (DOA), a blinding disease that affects specifically the retinal ganglion cells (RGCs), which function consists in connecting the neuro-retina to the brain. OPA1 encodes an intra-mitochondrial dynamin, involved in inner membrane structures and ubiquitously expressed, raising the critical question of the origin of the disease pathophysiology. Here, we review the fundamental knowledge on OPA1 functions and regulations, highlighting their involvements in mitochondrial respiration, membrane dynamic and apoptosis. In light of these functions, we then describe the remarkable RGC mitochondrial network physiology and analyse data collected from animal models expressing OPA1 mutations. If, to date RGC mitochondria does not present any peculiarity at the molecular level, they represent possible targets of numerous assaults, like light, pressure, oxidative stress and energetic impairment, which jeopardize their function and survival, as observed in OPA1 mouse models. Although fascinating fields of investigation are still to be addressed on OPA1 functions and on DOA pathophysiology, we have reached a conspicuous state of knowledge with pertinent cell and animal models, from which therapeutic trials can be initiated and deeply evaluated

    Tensile Forces and Shape Entropy Explain Observed Crista Structure in Mitochondria

    Full text link
    A model is presented from which the observed morphology of the inner mitochondrial membrane can be inferred as minimizing the system's free energy. Besides the usual energetic terms for bending, surface area, and pressure difference, our free energy includes terms for tension that we believe to be exerted by proteins and for an entropic contribution due to many dimensions worth of shapes available at a given energy. In order to test the model, we measured the structural features of mitochondria in HeLa cells and mouse embryonic fibroblasts using 3D electron tomography. Such tomograms reveal that the inner membrane self-assembles into a complex structure that contains both tubular and flat lamellar crista components. This structure, which contains one matrix compartment, is believed to be essential to the proper functioning of mitochondria as the powerhouse of the cell. We find that tensile forces of the order of 10 pN are required to stabilize a stress-induced coexistence of tubular and flat lamellar cristae phases. The model also predicts \Deltap = -0.036 \pm 0.004 atm and \sigma=0.09 \pm 0.04 pN/nm

    Reduction of the ATPase inhibitory factor 1 (IF1) leads to visual impairment in vertebrates

    Get PDF
    In vertebrates, mitochondria are tightly preserved energy producing organelles, which sustain nervous system development and function. The understanding of proteins that regulate their homoeostasis in complex animals is therefore critical and doing so via means of systemic analysis pivotal to inform pathophysiological conditions associated with mitochondrial deficiency. With the goal to decipher the role of the ATPase inhibitory factor 1 (IF1) in brain development, we employed the zebrafish as elected model reporting that the Atpif1aβˆ’/βˆ’ zebrafish mutant, pinotage (pnttq209), which lacks one of the two IF1 paralogous, exhibits visual impairment alongside increased apoptotic bodies and neuroinflammation in both brain and retina. This associates with increased processing of the dynamin-like GTPase optic atrophy 1 (OPA1), whose ablation is a direct cause of inherited optic atrophy. Defects in vision associated with the processing of OPA1 are specular in Atpif1βˆ’/βˆ’ mice thus confirming a regulatory axis, which interlinks IF1 and OPA1 in the definition of mitochondrial fitness and specialised brain functions. This study unveils a functional relay between IF1 and OPA1 in central nervous system besides representing an example of how the zebrafish model could be harnessed to infer the activity of mitochondrial proteins during development

    The C. elegans Opa1 Homologue EAT-3 Is Essential for Resistance to Free Radicals

    Get PDF
    The C. elegans eat-3 gene encodes a mitochondrial dynamin family member homologous to Opa1 in humans and Mgm1 in yeast. We find that mutations in the C. elegans eat-3 locus cause mitochondria to fragment in agreement with the mutant phenotypes observed in yeast and mammalian cells. Electron microscopy shows that the matrices of fragmented mitochondria in eat-3 mutants are divided by inner membrane septae, suggestive of a specific defect in fusion of the mitochondrial inner membrane. In addition, we find that C. elegans eat-3 mutant animals are smaller, grow slower, and have smaller broodsizes than C. elegans mutants with defects in other mitochondrial fission and fusion proteins. Although mammalian Opa1 is antiapoptotic, mutations in the canonical C. elegans cell death genes ced-3 and ced-4 do not suppress the slow growth and small broodsize phenotypes of eat-3 mutants. Instead, the phenotypes of eat-3 mutants are consistent with defects in oxidative phosphorylation. Moreover, eat-3 mutants are hypersensitive to paraquat, which promotes damage by free radicals, and they are sensitive to loss of the mitochondrial superoxide dismutase sod-2. We conclude that free radicals contribute to the pathology of C. elegans eat-3 mutants

    Heterozygous Mutation of Opa1 in Drosophila Shortens Lifespan Mediated through Increased Reactive Oxygen Species Production

    Get PDF
    Optic atrophy 1 (OPA1) is a dynamin-like GTPase located in the inner mitochondrial membrane and mutations in OPA1 are associated with autosomal dominant optic atrophy (DOA). OPA1 plays important roles in mitochondrial fusion, cristae remodeling and apoptosis. Our previous study showed that dOpa1 mutation caused elevated reactive oxygen species (ROS) production and resulted in damage and death of the cone and pigment cells in Drosophila eyes. Since ROS-induced oxidative damage to the cells is one of the primary causes of aging, in this study, we examined the effects of heterozygous dOpa1 mutation on the lifespan. We found that heterozygous dOpa1 mutation caused shortened lifespan, increased susceptibility to oxidative stress and elevated production of ROS in the whole Drosophila. Antioxidant treatment partially restored lifespan in the male dOpa1 mutants, but had no effects in the females. Heterozygous dOpa1 mutation caused an impairment of respiratory chain complex activities, especially complexes II and III, and reversible decreased aconitase activity. Heterozygous dOpa1 mutation is also associated with irregular and dysmorphic mitochondria in the muscle. Our results, for the first time, demonstrate the important role of OPA1 in aging and lifespan, which is most likely mediated through augmented ROS production

    Targeting and Function of the Mitochondrial Fission Factor GDAP1 Are Dependent on Its Tail-Anchor

    Get PDF
    Proteins controlling mitochondrial dynamics are often targeted to and anchored into the mitochondrial outer membrane (MOM) by their carboxyl-terminal tail-anchor domain (TA). However, it is not known whether the TA modulates protein function. GDAP1 is a mitochondrial fission factor with two neighboring hydrophobic domains each flanked by basic amino acids (aa). Here we define GDAP1 as TA MOM protein. GDAP1 carries a single transmembrane domain (TMD) that is, together with the adjacent basic aa, critical for MOM targeting. The flanking N-terminal region containing the other hydrophobic domain is located in the cytoplasm. TMD sequence, length, and high hydrophobicity do not influence GDAP1 fission function if MOM targeting is maintained. The basic aa bordering the TMD in the cytoplasm, however, are required for both targeting of GDAP1 as part of the TA and GDAP1-mediated fission. Thus, this GDAP1 region contains critical overlapping motifs defining intracellular targeting by the TA concomitant with functional aspects

    OPA1-related dominant optic atrophy is not strongly influenced by mitochondrial DNA background

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leber's hereditary optic neuropathy (LHON) and autosomal dominant optic atrophy (ADOA) are the most frequent forms of hereditary optic neuropathies. LHON is associated with mitochondrial DNA (mtDNA) mutations whereas ADOA is mainly due to mutations in the OPA1 gene that encodes a mitochondrial protein involved in the mitochondrial inner membrane remodeling. A striking influence of mtDNA haplogroup J on LHON expression has been demonstrated and it has been recently suggested that this haplogroup could also influence ADOA expression. In this study, we have tested the influence of mtDNA backgrounds on OPA1 mutations.</p> <p>Methods</p> <p>To define the relationships between OPA1 mutations and mtDNA backgrounds, we determined the haplogroup affiliation of 41 French patients affected by OPA1-related ADOA by control-region sequencing and RFLP survey of their mtDNAs.</p> <p>Results</p> <p>The comparison between patient and reference populations did not revealed any significant difference.</p> <p>Conclusion</p> <p>Our results argue against a strong influence of mtDNA background on ADOA expression. These data allow to conclude that OPA1 could be considered as a "severe mutation", directly responsible of the optic atrophy, whereas OPA1-negative ADOA and LHON mutations need an external factor(s) to express the pathology (i.e. synergistic interaction with mitochondrial background).</p

    OPA1 links human mitochondrial genome maintenance to mtDNA replication and distribution

    Get PDF
    Eukaryotic cells harbor a small multiploid mitochondrial genome, organized in nucleoids spread within the mitochondrial network. Maintenance and distribution of mitochondrial DNA (mtDNA) are essential for energy metabolism, mitochondrial lineage in primordial germ cells, and to prevent mtDNA instability, which leads to many debilitating human diseases. Mounting evidence suggests that the actors of the mitochondrial network dynamics, among which is the intramitochondrial dynamin OPA1, might be involved in these processes. Here, using siRNAs specific to OPA1 alternate spliced exons, we evidenced that silencing of the OPA1 variants including exon 4b leads to mtDNA depletion, secondary to inhibition of mtDNA replication, and to marked alteration of mtDNA distribution in nucleoid and nucleoid distribution throughout the mitochondrial network. We demonstrate that a small hydrophobic 10-kDa peptide generated by cleavage of the OPA1-exon4b isoform is responsible for this process and show that this peptide is embedded in the inner membrane and colocalizes and coimmunoprecipitates with nucleoid components. We propose a novel synthetic model in which a peptide, including two trans-membrane domains derived from the N terminus of the OPA1-exon4b isoform in vertebrates or from its ortholog in lower eukaryotes, might contribute to nucleoid attachment to the inner mitochondrial membrane and promotes mtDNA replication and distribution. Thus, this study places OPA1 as a direct actor in the maintenance of mitochondrial genome integrity

    Mitochondrial fragmentation and superoxide anion production in coronary endothelial cells from a mouse model of type 1 diabetes

    Get PDF
    Mitochondria frequently change their shapes by fusion and fission and these morphological dynamics play important roles in mitochondrial function and development as well as programmed cell death. The goal of this study is to investigate whether: (1) mitochondria in mouse coronary endothelial cells (MCECs) isolated from diabetic mice exhibit increased fragmentation; and (2) chronic treatment with a superoxide anion (O2 βˆ’) scavenger has a beneficial effect on mitochondrial fragmentation in MCECs. MCECs were freshly isolated and lysed for protein measurement, or cultured to determine mitochondrial morphology and O2 βˆ’ production. For the ex vivo hyperglycaemia experiments, human coronary endothelial cells were used. Elongated mitochondrial tubules were observed in MCECs isolated from control mice, whereas mitochondria in MCECs from diabetic mice exhibited augmented fragmentation. The level of optic atrophy 1 (OPA1) protein, which leads to mitochondrial fusion, was significantly decreased, while dynamin-related protein 1 (DRP1), which leads to mitochondrial fission, was significantly increased in MCECs from diabetic mice. Diabetic MCECs exhibited significantly higher O2 βˆ’ concentrations in cytosol and mitochondria than control MCECs. Administration of the O2 βˆ’ scavenger TEMPOL to diabetic mice for 4Β weeks led to a significant decrease in mitochondrial fragmentation without altering the levels of OPA1 and DRP1 proteins in MCECs. High-glucose treatment for 24Β h significantly induced mitochondrial fragmentation, which was restored by TEMPOL treatment. In addition, excess O2 βˆ’ production, either in cytosol or in mitochondria, significantly increased mitochondrial fragmentation. These data suggest that lowering the O2 βˆ’ concentration can restore the morphological change in mitochondria and may help improve mitochondrial function in diabetic MCECs

    Mitochondrial Morphogenesis, Dendrite Development, and Synapse Formation in Cerebellum Require both Bcl-w and the Glutamate Receptor Ξ΄2

    Get PDF
    Bcl-w belongs to the prosurvival group of the Bcl-2 family, while the glutamate receptor Ξ΄2 (Grid2) is an excitatory receptor that is specifically expressed in Purkinje cells, and required for Purkinje cell synapse formation. A recently published result as well as our own findings have shown that Bcl-w can physically interact with an autophagy protein, Beclin1, which in turn has been shown previously to form a protein complex with the intracellular domain of Grid2 and an adaptor protein, nPIST. This suggests that Bcl-w and Grid2 might interact genetically to regulate mitochondria, autophagy, and neuronal function. In this study, we investigated this genetic interaction of Bcl-w and Grid2 through analysis of single and double mutant mice of these two proteins using a combination of histological and behavior tests. It was found that Bcl-w does not control the cell number in mouse brain, but promotes what is likely to be the mitochondrial fission in Purkinje cell dendrites, and is required for synapse formation and motor learning in cerebellum, and that Grid2 has similar phenotypes. Mice carrying the double mutations of these two genes had synergistic effects including extremely long mitochondria in Purkinje cell dendrites, and strongly aberrant Purkinje cell dendrites, spines, and synapses, and severely ataxic behavior. Bcl-w and Grid2 mutations were not found to influence the basal autophagy that is required for Purkinje cell survival, thus resulting in these phenotypes. Our results demonstrate that Bcl-w and Grid2 are two critical proteins acting in distinct pathways to regulate mitochondrial morphogenesis and control Purkinje cell dendrite development and synapse formation. We propose that the mitochondrial fission occurring during neuronal growth might be critically important for dendrite development and synapse formation, and that it can be regulated coordinately by multiple pathways including Bcl-2 and glutamate receptor family members
    • …
    corecore