30 research outputs found
Endogenous annexin A1 counter-regulates bleomycin-induced lung fibrosis
PMCID: PMC3212807This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
The impact of endogenous annexin A1 on glucocorticoid control of in ammatory arthritis
This work was supported by a Wellcome Trust (UK) project grant 083551. SMO is funded by Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Grant 2011/00128-1) and Conselho Nacional de Desenvolvimento Científico e Tecnológico – CNPq (Grant 302768/2010-6)
The role of the Annexin-A1/FPR2 system in the regulation of mast cell degranulation provoked by compound 48/80 and in the inhibitory action of nedocromil
Abstract1.We investigated the role of Annexin (ANX)-A1 and its receptor, ALX/FPR2, in the regulation of mast cell degranulation produced by compound 48/80.2.Both human cord-blood derived mast cells (CBDMCs) and murine bone marrow derived mast cells (BMDMCs) release phosphorylated ANX-A1 during treatment with glucocorticoids or the mast cell ‘stabilising’ drugs ketotifen and nedocromil.3.Compound 48/80 also stimulated ANX-A1 phosphorylation and release and this was also potentiated by nedocromil. Anti-ANX-A1 neutralising monoclonal antibodies (Mabs) enhanced the release of pro-inflammatory mediators in response to compound 48/80.4.Nedocromil and ketotifen potently inhibited the release of histamine, PGD2, tryptase and β-hexosaminidase from mast cells challenged with compound 48/80. Anti-ANX-A1 neutralising Mabs prevented the inhibitory effect of these drugs.5.BMDMCs derived from Anx-A1−/− mice were insensitive to the inhibitory effects of nedocromil or ketotifen but cells retained their sensitivity to the inhibitory action of hu-r-ANX-A1.6.The fpr2/3 antagonist WRW4 blocked the action of nedocromil on PGD2, but not histamine, release. BMDMCs derived from fpr2/3−/− mice were insensitive to the inhibitory effects of nedocromil on PGD2, but not histamine release.7.Compound 48/80 stimulated both p38 and JNK phosphorylation in CBDMCs and this was inhibited by nedocromil. Inhibition of p38 phosphorylation was ANX-A1 dependent.8.We conclude that ANX-A1 is an important regulator of mast cell reactivity to compound 48/80 exerting a negative feedback effect through a mechanism that depends at least partly on the FPR receptor
Anti-Allergic Cromones Inhibit Histamine and Eicosanoid Release from Activated Human and Murine Mast Cells by Releasing Annexin A1
PMCID: PMC3601088This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
An immunocytochemical and in situ hybridization analysis of annexin 1 expression in rat mast cells: modulation by inflammation and dexamethasone.
The presence and localization of the anti-inflammatory protein annexin 1 (also known as lipocortin 1) in perivenular rat mast cells was investigated here. Using the rat mesenteric microvascular bed and a combination of morphologic techniques ranging from immunofluorescence to electron microscopy analyses, we detected the presence of annexin 1 in discrete intracellular sites, both in the nucleus and in the cytoplasm. In resting mast cells, most of the protein pool (approximately 80% of the cytosolic portion) was localized to cytoplasmic granules. In agreement with other cell types, treatment of rats with dexamethasone (0.2 mg/kg, ip) increased annexin 1 expression in mast cells, inducing a remarkable appearance of clusters of protein immunoreactivity. This effect was most likely the result of de novo protein synthesis as determined by an increase in mRNA seen by in situ hybridization. Triggering an ongoing experimental inflammatory response (0.3 mg of carrageenin, ip) increased annexin 1 mRNA and protein levels. In conclusion, we report for the first time the localization of annexin 1 in connective tissue mast cells, and its susceptibility not only to glucocorticoid hormone treatment, but also to an experimental acute inflammatory response
Annexin 1: differential expression in tumor and mast cells in human larynx cancer.
Annexin 1 protein (ANXA1) expression was evaluated in tumor and mast cells in human larynx cancer and control epithelium. The effect of the exogenous ANXA1 (peptide Ac 2-26) was also examined during the cellular growth of the Hep-2 human larynx epidermoid carcinoma cell line. This peptide inhibited the proliferation of the Hep-2 cells within 144 hr. In surgical tissue specimens from 20 patients with larynx cancer, ultrastructural immunocytochemistry analysis showed in vivo down-regulation of ANXA1 expression in the tumor and increased in mast cells and Hep-2 cells treated with peptide Ac2-26. Combined in vivo and in vitro analysis demonstrated that ANXA1 plays a regulatory role in laryngeal cancer cell growth. We believe that a better understanding of the regulatory mechanisms of ANXA1 in tumor and mast cells may lead to future biological targets for the therapeutic intervention of human larynx cancer