104 research outputs found

    Application of ESI FT-ICR MS to Study Kraft Lignin Modification by the Exoenzymes of the White Rot Basidiomycete Fungus TrametesHirsutaLE-BIN 072

    Get PDF
    Trameteshirsuta is a wood rotting fungus that possesses a vast array of lignin degrading enzymes, including7 laccases, 7 ligninolyticmanganese peroxidases, 9 lignin peroxidases and 2 versatile peroxidases. In this study,electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS)was used to examine kraft lignin modification by the enzymatic system of this fungus.The observed pattern of lignin modification suggested that before the 6th day of cultivation,the fungal enzymatic system tended to degrade more oxidized moleculesand, hence, less recalcitrant molecules, with the production of hard-to-modify reduced molecular species. At some point after the 6th day of cultivation,the fungal enzymatic system tended to degrade more oxidized moleculesand, hence, less recalcitrant molecules, with the production of hard-to-modify reduced molecular species. At some point after the 6th day of cultivation,the fungus started to degrade less oxidized, more recalcitrant, compounds, converting them into the more oxidized forms. The altered pattern of lignin modification enabled changes in the fungal enzymatic system. These changes were further attributed to the appearance of the particular ligninolyticmanganese peroxides enzyme(MnP7), which was added by the fungus to the mixture of enzymes that had already been secreted (VP2 and MnP5). Keywords: wood rotting fungi, kraft lignin, mass spectrometry, peroxidase

    The mouse anterior chamber angle and trabecular meshwork develop without cell death

    Get PDF
    BACKGROUND: The iridocorneal angle forms in the mammalian eye from undifferentiated mesenchyme between the root of the iris and cornea. A major component is the trabecular meshwork, consisting of extracellular matrix organized into a network of beams, covered in trabecular endothelial cells. Between the beams, channels lead to Schlemm's canal for the drainage of aqueous humor from the eye into the blood stream. Abnormal development of the iridocorneal angle that interferes with ocular fluid drainage can lead to glaucoma in humans. Little is known about the precise mechanisms underlying angle development. There are two main hypotheses. The first proposes that morphogenesis involves mainly cell differentiation, matrix deposition and assembly of the originally continuous mesenchymal mass into beams, channels and Schlemm's canal. The second, based primarily on rat studies, proposes that cell death and macrophages play an important role in forming channels and beams. Mice provide a potentially useful model to understand the origin and development of angle structures and how defective development leads to glaucoma. Few studies have assessed the normal structure and development of the mouse angle. We used light and electron microscopy and a cell death assay to define the sequence of events underlying formation of the angle structures in mice. RESULTS: The mouse angle structures and developmental sequence are similar to those in humans. Cell death was not detectable during the period of trabecular channel and beam formation. CONCLUSIONS: These results support morphogenic mechanisms involving organization of cellular and extracellular matrix components without cell death or atrophy

    Probiotic Potential and Functional Properties of Lactobacillus Reuteri, Lactobacillus Rhamnosus and Lactobacillus Helveticus: A Comparative Study

    Get PDF
    This study was conducted to evaluate and comparethe probiotic propertiesofLactobacillus helveticusNK1, Lactobacillus rhamnosusF and Lactobacillus reuteriLR1lactobacilli strains.Changes in pH, cell growth, proteolytic activity, antioxidantactivity, and angiotensin-converting enzyme(ACE)inhibitoryactivity were monitored during fermentation ofreconstituted skim milk (RSM) by pure cultures of lactobacilli.Among the tested strains, L. helveticusNK1 showed the highest proteolytic, ACE inhibitoryand antioxidantactivitiesduring milk fermentation,followed by L. rhamnosus F and L. reuteriLR1.The promising capability of all of the lactobacilli strains to release bioactivepeptides from the milk proteins was demonstrated. Keywords: Lactobacillus, probiotic, milk fermentation, bioactive peptide

    By Altering Ocular Immune Privilege, Bone Marrow–derived Cells Pathogenically Contribute to DBA/2J Pigmentary Glaucoma

    Get PDF
    Pigment dispersion syndrome causes iris pigment release and often progresses to elevated intraocular pressure and pigmentary glaucoma (PG). Because melanin pigment can have adjuvant like properties and because the Gpnmb gene, which contributes to pigment dispersion in DBA/2J (D2) mice, is expressed in dendritic cells, we tested the hypothesis that ocular immune abnormalities participate in PG phenotypes. Strikingly, we show that D2 eyes exhibit defects of the normally immunosuppressive ocular microenvironment including inability of aqueous humor to inhibit T cell activation, failure to support anterior chamber (AC)-associated immune deviation, and loss of ocular immune privilege. Histologic analysis demonstrates infiltration of inflammatory leukocytes into the AC and their accumulation within the iris, whereas clinical indications of inflammation are typically very mild to undetectable. Importantly, some of these abnormalities precede clinical indications of pigment dispersal, suggesting an early role in disease etiology. Using bone marrow chimeras, we show that lymphohematopoietic cell lineages largely dictate the progression of pigment dispersion, the ability of the eye to support induction of AC-associated immune deviation, and the integrity of the blood/ocular barrier. These results suggest previously unsuspected roles for bone marrow–derived cells and ocular immune privilege in the pathogenesis of PG

    Evolutionary Relationships Between the Laccase Genes of Polyporales: Orthology-Based Classification of Laccase Isozymes and Functional Insight From Trametes hirsuta

    Get PDF
    Laccase is one of the oldest known and intensively studied fungal enzymes capable of oxidizing recalcitrant lignin-resembling phenolic compounds. It is currently well established that fungal genomes almost always contain several non-allelic copies of laccase genes (laccase multigene families); nevertheless, many aspects of laccase multigenicity, for example, their precise biological functions or evolutionary relationships, are mostly unknown. Here, we present a detailed evolutionary analysis of the sensu stricto laccase genes (CAZy – AA1_1) from fungi of the Polyporales order. The conducted analysis provides a better understanding of the Polyporales laccase multigenicity and allows for the systemization of the individual features of different laccase isozymes. In addition, we provide a comparison of the biochemical and catalytic properties of the four laccase isozymes from Trametes hirsuta and suggest their functional diversification within the multigene family

    Inducible nitric oxide synthase, Nos2, does not mediate optic neuropathy and retinopathy in the DBA/2J glaucoma model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nitric oxide synthase 2 (NOS2) contributes to neural death in some settings, but its role in glaucoma remains controversial. NOS2 is implicated in retinal ganglion cell degeneration in a rat glaucoma model in which intraocular pressure (IOP) is experimentally elevated by blood vessel cauterization, but not in a rat glaucoma model where IOP was elevated by injection of hypertonic saline. To test the importance of NOS2 for an inherited glaucoma, in this study we both genetically and pharmacologically decreased NOS2 activity in the DBA/2J mouse glaucoma model.</p> <p>Methods</p> <p>The expression of <it>Nos2 </it>in the optic nerve head was analyzed at both the RNA and protein levels at different stages of disease pathogenesis. To test the involvement of <it>Nos2 </it>in glaucomatous neurodegeneration, a null allele of <it>Nos2 </it>was backcrossed into DBA/2J mice and the incidence and severity of glaucoma was assessed in mice of each <it>Nos2 </it>genotype. Additionally, DBA/2J mice were treated with the NOS2 inhibitor aminoguanidine and the disease compared to untreated mice.</p> <p>Results</p> <p>Optic nerve head <it>Nos2 </it>RNA levels varied and increased during moderate but decreased at early and severe stages of disease. Despite the presence of a few NOS2 positive cells in the optic nerve head, NOS2 protein was not substantially increased during the glaucoma. Genetic deficiency of <it>Nos2 </it>or aminoguanidine treatment did not alter the IOP profile of DBA/2J mice. Additionally, neither <it>Nos2 </it>deficiency nor aminoguanidine had any detectable affect on the glaucomatous optic nerve damage.</p> <p>Conclusion</p> <p>Glaucomatous neurodegeneration in DBA/2J mice does not require NOS2 activity. Further experiments involving various models are needed to assess the general importance of <it>Nos2 </it>in glaucoma.</p

    Haploinsufficient Bmp4 ocular phenotypes include anterior segment dysgenesis with elevated intraocular pressure

    Get PDF
    BACKGROUND: Glaucoma is a blinding disease usually associated with high intraocular pressure (IOP). In some families, abnormal anterior segment development contributes to glaucoma. The genes causing anterior segment dysgenesis and glaucoma in most of these families are not identified and the affected developmental processes are poorly understood. Bone morphogenetic proteins (BMPs) participate in various developmental processes. We tested the importance of Bmp4 gene dosage for ocular development and developmental glaucoma. RESULTS: Bmp4(+/-) mice have anterior segment abnormalities including malformed, absent or blocked trabecular meshwork and Schlemm's canal drainage structures. Mice with severe drainage structure abnormalities, over 80% or more of their angle's extent, have elevated IOP. The penetrance and severity of abnormalities is strongly influenced by genetic background, being most severe on the C57BL/6J background and absent on some other backgrounds. On the C57BL/6J background there is also persistence of the hyaloid vasculature, diminished numbers of inner retinal cells, and absence of the optic nerve. CONCLUSIONS: We demonstrate that heterozygous deficiency of BMP4 results in anterior segment dysgenesis and elevated IOP. The abnormalities are similar to those in human patients with developmental glaucoma. Thus, BMP4 is a strong candidate to contribute to Axenfeld-Rieger anomaly and other developmental conditions associated with human glaucoma. BMP4 also participates in posterior segment development and wild-type levels are usually critical for optic nerve development on the C57BL/6J background. Bmp4(+/-) mice are useful for studying various components of ocular development, and may allow identification of strain specific modifiers affecting a variety of ocular phenotypes

    Susceptibility to Neurodegeneration in a Glaucoma Is Modified by Bax Gene Dosage

    Get PDF
    In glaucoma, harmful intraocular pressure often contributes to retinal ganglion cell death. It is not clear, however, if intraocular pressure directly insults the retinal ganglion cell axon, the soma, or both. The pathways that mediate pressure-induced retinal ganglion cell death are poorly defined, and no molecules are known to be required. DBA/2J mice deficient in the proapoptotic molecule BCL2-associated X protein (BAX) were used to investigate the roles of BAX-mediated cell death pathways in glaucoma. Both Bax (+/−) and Bax (−/−) mice were protected from retinal ganglion cell death. In contrast, axonal degeneration was not prevented in either Bax (+/−) or Bax (−/−) mice. While BAX deficiency did not prevent axonal degeneration, it did slow axonal loss. Additionally, we compared the effects of BAX deficiency on the glaucoma to its effects on retinal ganglion cell death due to two insults that are proposed to participate in glaucoma. As in the glaucoma, BAX deficiency protected retinal ganglion cells after axon injury by optic nerve crush. However, it did not protect retinal ganglion cells from N-methyl-D-aspartate (NMDA)-induced excitotoxicity. BAX is required for retinal ganglion cell death in an inherited glaucoma; however, it is not required for retinal ganglion cell axon degeneration. This indicates that distinct somal and axonal degeneration pathways are active in this glaucoma. Finally, our data support a role for optic nerve injury but not for NMDA receptor-mediated excitotoxicity in this glaucoma. These findings indicate a need to understand axon-specific degeneration pathways in glaucoma, and they suggest that distinct somal and axonal degeneration pathways may need to be targeted to save vision

    Chimeric Antibody 14D5 Protects Mice against the Far-Eastern, Siberian, and European Tick-borne Encephalitis Virus

    Get PDF
    Tick-borne encephalitis virus (TBEV), belonging to the Flaviviridae family, is the most significant pathogen transmitted by Ixodes ticks and causing one of the most severe human neuroinfections. In Russia, serum immunoglobulin produced from the donor blood is currently used for post-exposure prophylactic and therapy of tick-borne encephalitis virus. However, it is known that preparations obtained from donated blood have certain disadvantages, and therefore development of novel preparations for post exposure prophylaxis and therapy of tick-borne encephalitis is required. To develop an alternative preparation, which does not include donor blood, a chimeric antibody ch14D5 against glycoprotein E of TBEV was constructed.This study was aimed to investigate protective efficacy of the chimeric antibody ch14D5 against the Far-Eastern, Siberian, and European subtypes of TBEV in in vivo experiments.A peripheral mouse model of tick-borne encephalitis was used in this study: the chimeric antibody ch14D5 was administrated intravenously in mice one day after their intraperitoneal infection with TBEV strains Sofjin, Vasilchenko, and Absettarov. Anti-TBEV serum immunoglobulin was used as a control preparation, which was administered in the same way. Protective efficacy of the chimeric antibodies 14D5 was assessed using the log-rank test. In the study, the presence or absence of antibody-dependent enhancement of infection (ADE) was examined when mice, infected with different subtypes of the TBEV, got the antibody ch14d5.Obtained results demonstrated high efficacy of the ch14D5 antibody in post-exposure prophylaxis of the disease in mice infected with any of the used TBEV strains, as well as the absence of ADE.It was shown that protective efficacy of antibody ch14D5 is higher than that of the anti-TBEV serum immunoglobulin, and antibody ch14D5 could be used for development of a therapeutic preparation for post-exposure prophylaxis

    Thyroid Hormone Promotes Remodeling of Coronary Resistance Vessels

    Get PDF
    Low thyroid hormone (TH) function has been linked to impaired coronary blood flow, reduced density of small arterioles, and heart failure. Nonetheless, little is known about the mechanisms by which THs regulate coronary microvascular remodeling. The current study examined the initial cellular events associated with coronary remodeling induced by triiodothyronine (T3) in hypothyroid rats. Rats with established hypothyroidism, eight weeks after surgical thyroidectomy (TX), were treated with T3 for 36 or 72 hours. The early effects of T3 treatment on coronary microvasculature were examined morphometrically. Gene expression changes in the heart were assessed by quantitative PCR Array. Hypothyroidism resulted in arteriolar atrophy in the left ventricle. T3 treatment rapidly induced small arteriolar muscularization and, within 72 hours, restored arteriolar density to control levels. Total length of the capillary network was not affected by TX or T3 treatment. T3 treatment resulted in the coordinate regulation of Angiopoietin 1 and 2 expression. The response of Angiopoietins was consistent with vessel enlargement. In addition to the well known effects of THs on vasoreactivity, these results suggest that THs may affect function of small resistance arteries by phenotypic remodeling of vascular smooth muscle cells (VSMC)
    corecore