9 research outputs found

    Equisetum arvense

    Get PDF
    Background. The antimicrobial activity of the Equisetum arvense L. extract and the mechanisms involved in the in vitro effects on endothelial vascular cells exposed to hyperosmotic stress were evaluated. Methods. Antimicrobial activity was evaluated by disk diffusion method and minimum inhibitory concentration (MIC) determination, and oxidative stress, inflammation, and apoptosis, in pretreatment with Equisetum arvense L., caffeic acid, and cathechin, were quantified. Results. The results have shown that Equisetum arvense L. exhibited antibacterial effects only on pathogenic gram-positive cocci. The modulatory activity of Equisetum arvense L. on endothelial cells exposed to hypertonic medium was different and depended on the concentration used. Low concentrations of tested compounds exerted antioxidant effect and diminished the activity of caspase-8 and also increased IκB expression while in high doses, Equisetum arvense L. was prooxidant, induced apoptosis, and decreased IL-6 secretion. Conclusions. These experimental findings suggest that Equisetum arvense L. has antibacterial effects on gram-positive cocci and, administered in low dose, may be a new therapeutic approach for diseases associated with hypertonic conditions or oxidative stress and apoptosis

    Platinum derivatives: generic brands vs. original, in vitro tests

    No full text
    The entry of the generic drugs on the market was an impressive development of the pharmaceutical industry and due to their lower prices also a decrease in the cost price for the treatment of patients. The difference in price (sometimes even 50%) between generics and original and different response to therapy sometimes raised serious questions related to their therapeutic equivalence. The scientific community is increasingly interested in this aspect, with studies (in vitro and on patients) demonstrated statistically significant differences in terms of differences generic / original drug. In this context, the aim of our study was to assess the in vitro cytotoxic activity of oxaliplatin (original and generic drug) on DLD-1 cell lines, HT-29, and carboplatin cytotoxic activity (and the reference molecule from Santa Cruz Biotechnology) on cell line A2780. Cell viability was evaluated using the MTT assay

    Additional file 3: Figure S3. of Dental follicle stem cells in bone regeneration on titanium implants

    No full text
    Alamar Blue viability assay. For testing the viability and proliferation rate of DF stem cells cultivated on titanium implants, cells seeded at a cell density of 1.2 × 105 cells/well in 12-wells plates were stained with Alamar blue solution at different periods of time (24 h, 4 and 12 days). Briefly, 100 μl of Alamar blue solution (Invitrogen) was added in each well containing 900 μl stem cell medium or differentiation medium (OS and OC). Each sample was evaluated in triplicate. After 1 h of incubation in dark at 37 °C, the medium was transferred to another 12-well plates and the absorbance was read using a BioTek Synergy 2 plate reader at 570 nm (Winooski, VT, USA). Statistical analysis was performed using t test and two-way ANOVA, Bonferroni posttest. Results: No important differences were observed between titanium implants in terms of cell viability. Statistical differences were noticed only for the 24 h culture between cell cultured on control titanium implants (Ti ctrl) and implants infiltrated with HA (Ti HA) (Figure S3). Two-way ANOVA statistical analysis revealed differences regarding the time factor (24 h vs. 12 days and 4 vs. 12 days) Figure S3: Graphical aspect of optical density values (absorbance at 570 nm) of Alamar blue staining of DF stem cells cultivated with standard stem cell medium evaluated after 24 h, 4 and 12 days (Legend: TiCtrl- Ti6Al7Nb alloy porous titanium, TiHA-titanium infiltrated with hydroxyapatite, TiSiO2-titanium infiltrated with silicatitanate). (PNG 1002 kb

    Additional file 5: Figure S1. of Dental follicle stem cells in bone regeneration on titanium implants

    No full text
    Neuronal differentiation of Df stem cells. Protocol of neuronal differentiation. DF stem cells were seeded in 6 well plates at cell density of 20 × 105 cells/well. When cells reached confluence a two steps protocol was applied: cells were cultivated for 48 h in presence of neuronal differentiation medium 1 consisting of DMEM high glucose/F12-HAM (1:1 ratio), 10 % fetal bovine serum (FBS), 1 % antibiotics,2 mM glutamine, 1 % non-essential aminoacids (NEA), supplemented with 10 ng/ml Epidermal Growth Factor (EGF), 10 ng/ml basic Fibroblast Growth Factor (bFGF), 2 % B27 and 1 % N2 Supplement. Afterwards cells were exposed to the differentiation medium 2 for 3 weeks: DMEM high glucose/F12-HAM, 10 % FBS, 1 % antibiotics, 2 mM glutamine, 1 % NEA, 1 % N2 Supplement, 2 % B27 Supplement, 3 μM all-trans retinoic acid, 0.5 mM 3-isobutyl-1-methyl-xanthine (IBMX) (all reagents were purchased from Sigma Aldrich). At the end of 3 weeks of DF stem cultivation with neuronal differentiation medium, cells were fixed and immunocytochemical stained for neurofilaments and CD 133 expression. As shown in Figure S1, the stained cells expressed positivity only for neurofilaments. Figure S1: Fluorescence image of DF stem cells induced to differentiate into neuronal cells. Cells were stained with anti neurofilaments antibody conjugated with FITC green), anti CD 133 conjugated with Texas red (red) and nuclei were counterstained with DAPI (magnification ×100). (PNG 451 kb

    Additional file 6: Figure S6. of Dental follicle stem cells in bone regeneration on titanium implants

    No full text
    The physical chemical characterization of titanium coatings. For proving that by used sol–gel method we obtain these nanocrystalline forms of HA and anatase, after heat treatments at quite low temperatures. Figure S6: XRD pattern of hydroxyapatite sample after 600 oC heat treatment. (PNG 7 kb

    Additional file 2: Figure S2. of Dental follicle stem cells in bone regeneration on titanium implants

    No full text
    FDA (fluorescein diacetate) viability test. DF stem cell adhesion after 1 h as well the proliferation rate during 48 h and 7 days of cultivation on titanium implants surfaces were investigated using FDA assay. Images were captured in fluorescence microscopy at 488 nm with a Zeiss Axiovert microscope. Image acquisition was performed with an AxioCam MRC camera. Figure S2: Fluorescence images captured after FDA staining of DF stemm cells after 1, 48 h and 7 days of cultivation in standard stem cell medium. (Legend: TiCtrl- Ti6Al7Nb alloy porous titanium, TiHA-titanium infiltrated with hydroxyapatite, TiSiO2-titanium infiltrated with silicatitanate) (magnification ×100). (PNG 940 kb
    corecore