26 research outputs found

    Structural-energy states of water and aqueous solutions under external influence

    Get PDF
    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation

    Links between soil bacteriobiomes and fungistasis toward fungi infecting the Colorado potato beetle

    Get PDF
    Entomopathogenic fungi can be inhibited by different soil microorganisms, but the effect of a soil microbiota on fungal growth, survival, and infectivity toward insects is insufficiently understood. We investigated the level of fungistasis toward Metarhizium robertsii and Beauveria bassiana in soils of conventional potato fields and kitchen potato gardens. Agar diffusion methods, 16S rDNA metabarcoding, bacterial DNA quantification, and assays of Leptinotarsa decemlineata survival in soils inoculated with fungal conidia were used. Soils of kitchen gardens showed stronger fungistasis toward M. robertsii and B. bassiana and at the same time the highest density of the fungi compared to soils of conventional fields. The fungistasis level depended on the quantity of bacterial DNA and relative abundance of Bacillus, Streptomyces, and some Proteobacteria, whose abundance levels were the highest in kitchen garden soils. Cultivable isolates of bacilli exhibited antagonism to both fungi in vitro. Assays involving inoculation of nonsterile soils with B. bassiana conidia showed trends toward elevated mortality of L. decemlineata in highly fungistatic soils compared to low-fungistasis ones. Introduction of antagonistic bacilli into sterile soil did not significantly change infectivity of B. bassiana toward the insect. The results support the idea that entomopathogenic fungi can infect insects within a hypogean habitat despite high abundance and diversity of soil antagonistic bacteria

    Time- and dose dependent actions of cardiotonic steroids on transcriptome and intracellular content of Na+ and K+: a comparative analysis

    Get PDF
    Recent studies demonstrated that in addition to Na+,K+-ATPase inhibition cardiotonic steroids (CTSs) affect diverse intracellular signaling pathways. This study examines the relative impact of [Na+]i/[K+]i-mediated and -independent signaling in transcriptomic changes triggered by the endogenous CTSs ouabain and marinobufagenin (MBG) in human umbilical vein endothelial cells (HUVEC). We noted that prolongation of incubation increased the apparent affinity for ouabain estimated by the loss of [K+]i and gain of [Na+]i. Six hour exposure of HUVEC to 100 and 3,000 nM ouabain resulted in elevation of the [Na+]i/[K+]i ratio by ~15 and 80-fold and differential expression of 258 and 2185 transcripts, respectively. Neither [Na+]i/[K+]i ratio nor transcriptome were affected by 6-h incubation with 30 nM ouabain. The 96-h incubation with 3 nM ouabain or 30 nM MBG elevated the [Na+]i/[K+]i ratio by ~14 and 3-fold and led to differential expression of 880 and 484 transcripts, respectively. These parameters were not changed after 96-h incubation with 1 nM ouabain or 10 nM MBG. Thus, our results demonstrate that elevation of the [Na+]i/[K+]i ratio is an obligatory step for transcriptomic changes evoked by CTS in HUVEC. The molecular origin of upstream [Na+]i/[K+]i sensors involved in transcription regulation should be identified in forthcoming studies

    Deoxygenation affects composition of membrane-bound proteins in human erythrocytes

    Get PDF
    Background/Aims: ATP release from erythrocyte plays a key role in hypoxia-induced elevation of blood flow in systematic circulation. We have previously shown that hemolysis contributes to erythrocyte ATP release triggered by several stimuli, including hypoxia, but the molecular mechanisms of hypoxia-increased membrane fragility remain unknown. Methods: In this study, we compared the action of hypoxia on hemolysis, ATP release and the composition of membrane-bound proteins in human erythrocytes. Results: Twenty minutes incubation of human erythrocytes in the oxygen-free environment increased the content of extracellular hemoglobin by ∼1.5 fold. Paired measurements of hemoglobin and ATP content in the same samples, showed a positive correlation between hemolysis and ATP release. Comparative analysis of SDS-PAGE electrophoresis of erythrocyte ghosts obtained under control and deoxygenated conditions revealed a ∼2-fold elevation of the content of membrane-bound protein with Mr of ∼60 kDa. Conclusion: Deoxygenation of human erythrocytes affects composition of membrane-bound proteins. Additional experiments should be performed to identify the molecular origin of 60 kDa protein and its role in the attenuation of erythrocyte integrity and ATP release in hypoxic conditions

    Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals

    Get PDF
    We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57

    Structural-energy states of water and aqueous solutions under external influence

    No full text
    The surface state of alkaline-earth metals and magnesium oxides obtained by means of commercial and laboratory ways has been studied in this paper. A complex of methods has been used for identification, determination of a phase composition and morphology of the samples. The high basic character of surface centres has been shown with the help of pH-metry and adsorption of indicators methods. Acid-basic parameters (pHt, pHiis, etc.) can be used for the estimation of a general acid-basic state of metal oxides samples surface and for the supposition about different nature and strength of acid-basic centres as well as for the initial control in the process of acid basic properties of solid oxides surface properties evaluation

    Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio

    No full text
    Elevation of Ca2+i and AMP-activated protein kinase (AMPK) are considered as major signals triggering transcriptomic changes in exercising skeletal muscle. Electrical pulse stimulation (EPS) of cultured myotubes is widely employed as an in vitro model of muscle contraction. This study examines the impact of Ca2+i-mediated and Ca2+i-independent signaling in transcriptomic changes in EPS-treated C2C12 myotubes. Electrical pulse stimulation (40 V, 1 Hz, 10 ms, 2 h) resulted in [Ca2+]i oscillations, gain of Na+i, loss of K+i, and differential expression of 3215 transcripts. Additions of 10 μM nicardipine abolished [Ca2+]i oscillations but did not affect elevation of the [Na+]i/[K+]i ratio seen in EPS-treated myotubes. Differential expression of 1018 transcripts was preserved in the presence of nicardipine, indicating a Ca2+i-independent mechanism of excitation–transcription coupling. Among nicardipine-resistant transcripts, we noted 113 transcripts whose expression was also affected by partial Na+,K+-ATPase inhibition with 30 μM ouabain providing the same elevation of the [Na+]i/[K+]i ratio as in EPS-treated cells. Electrical pulse stimulation increased phosphorylation of CREB, ATF-1, Akt, ERK, and p38 MAPK without any impact on phosphorylation of acetyl-CoA carboxylase and Unc-51 like autophagy activating kinase-1, i.e. downstream markers of AMPK activation. Unlike CREB, ATF-1, and MAPKs, an increment in Akt phosphorylation was abolished by nicardipine. Thus, our results show that Ca2+i-independent signaling plays a key role in altered expression of 30% of studied genes in EPS-treated myotubes. This signaling pathway is at least partially triggered by dissipation of transmembrane gradients of monovalent cations

    Transcriptomic changes in C2C12 myotubes triggered by electrical stimulation: Role of Ca2+i-mediated and Ca2+i-independent signaling and elevated [Na+]i/[K+]i ratio

    No full text
    Elevation of Ca2+i and AMP-activated protein kinase (AMPK) are considered as major signals triggering transcriptomic changes in exercising skeletal muscle. Electrical pulse stimulation (EPS) of cultured myotubes is widely employed as an in vitro model of muscle contraction. This study examines the impact of Ca2+i-mediated and Ca2+i-independent signaling in transcriptomic changes in EPS-treated C2C12 myotubes. Electrical pulse stimulation (40 V, 1 Hz, 10 ms, 2 h) resulted in [Ca2+]i oscillations, gain of Na+i, loss of K+i, and differential expression of 3215 transcripts. Additions of 10 μM nicardipine abolished [Ca2+]i oscillations but did not affect elevation of the [Na+]i/[K+]i ratio seen in EPS-treated myotubes. Differential expression of 1018 transcripts was preserved in the presence of nicardipine, indicating a Ca2+i-independent mechanism of excitation–transcription coupling. Among nicardipine-resistant transcripts, we noted 113 transcripts whose expression was also affected by partial Na+,K+-ATPase inhibition with 30 μM ouabain providing the same elevation of the [Na+]i/[K+]i ratio as in EPS-treated cells. Electrical pulse stimulation increased phosphorylation of CREB, ATF-1, Akt, ERK, and p38 MAPK without any impact on phosphorylation of acetyl-CoA carboxylase and Unc-51 like autophagy activating kinase-1, i.e. downstream markers of AMPK activation. Unlike CREB, ATF-1, and MAPKs, an increment in Akt phosphorylation was abolished by nicardipine. Thus, our results show that Ca2+i-independent signaling plays a key role in altered expression of 30% of studied genes in EPS-treated myotubes. This signaling pathway is at least partially triggered by dissipation of transmembrane gradients of monovalent cations

    Mechanisms of Macrolide Resistance among Streptococcus pneumoniae Isolates from Russia▿

    No full text
    Among 76 macrolide-nonsusceptible Streptococcus pneumoniae isolates collected between 2003 and 2005 from Central Russia, the resistance mechanisms detected in the isolates included erm(B) alone (50%), mef alone [mef(E), mef(I), or a different mef subclass; 19.7%], or both erm(B) and mef(E) (30.3%). Isolates with dual resistance genes [erm(B) and mef(E)] belonged to clonal complex CC81 or CC271

    Structural Modification of Ciprofloxacin and Norfloxacin for Searching New Antibiotics to Combat Drug-resistant Bacteria

    Full text link
    The aim of the work. Among all the representatives of four generations of fluoroquinolones ciprofloxacin (CIPRO) and norfloxacin (NOR) remain widely used and prescribed antibiotics in clinical practice. However, the problem of resistance towards them is gradually increasing. Thus, our investigation is dedicated to chemical modification of C-7 position of Ciprofloxacin and Norfloxacin ring as a promising solution to combat antibiotic resistance and open a pathway towards convenient synthesis of new fluoroquinolones derivatives. Materials and methods. The subjects of the research were N-piperazine-substituted ciprofloxacin and norfloxacin. The methods of molecular docking and organic synthesis were applied in the study. The structures of the obtained compounds were confirmed by 1H NMR, 13C NMR, 19F NMR, LC/MS, IR, UV spectroscopy. The antimicrobial activity was measured by the method of double serial dilutions against Staphylococcus aureus (ATCC 25923), Escherichia coli (ATCC 25922), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 27853), Candida albicans (NCTC 885-653) and diffusion in agar method against clinical strains. The results. 7-(4-(2-Cyanoacetyl)piperazin-1-yl)-1-R-6-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acids were synthesized and their structures were confirmed. The obtained compounds showed the antibacterial activity on the reference level for double dilution method and exceeded control for “well” method. Conclusions. The current investigation revealed the promising route for the expanding of the existing fluoroquinolones diversity. Pharmacodynamics and pharmacokinetics changes could be achieved by chemical modifications of C-7 position of the initial ring. Further research utilizing the obtained compounds as starting ones opens a promising way to novel active molecules synthesis and combating the problem of antibiotic resistanc
    corecore