4 research outputs found

    Simulation of the ENSO influence on the extra-tropical middle atmosphere

    No full text
    Abstract The impact of the El Niño Southern Oscillation (ENSO) on the Northern Hemisphere mid-winter zonal wind, temperature, and stationary planetary waves (SPWs) is evaluated using the Middle and Upper Atmosphere Model and Modern-Era Retrospective Analysis for Research and Applications (MERRA). The composites determined using simulated ensembles and MERRA winters with different ENSO phases show that the mean zonal wind in the stratosphere at higher-middle latitudes is weaker and polar region is warmer, and the activity of SPW1 is higher during El Niño events. The simulated and observed SPW2 amplitude behaves in the opposite way, and it is stronger in the stratosphere during La Niña. The observed changes of SPW1 and SPW2 amplitudes under La Niña and El Niño events should affect an efficiency of the stratosphere–troposphere coupling in different longitudinal sectors through the changes in horizontal distributions of the downward wave activity flux

    Manifestations of Different El Niño Types in the Dynamics of the Extratropical Stratosphere

    No full text
    The behavior of planetary waves and their influence on the global circulation of the Northern Hemisphere during different El Niño types is studied. Three sets of five boreal winters were chosen for each El Niño type: Modoki I and II and canonical El Niño. Based on data of the Japanese 55-year Reanalysis and the Modern-Era Retrospective Analysis for Research and Applications, the spatio-temporal structure of planetary waves and the residual mean circulation were analyzed. The results show that the canonical El Niño type is characterized by the weakest wave activity in March. It is also demonstrated that warming of the polar stratosphere, accompanied by maximizing wave activity and weakening of the zonal wind, may lead to earlier stratospheric polar vortex collapse and the early spring transition under Modoki I conditions. This study is the next step in understanding of the so-called long-range teleconnections, consisting of the propagation of a signal from the tropical El Niño Southern Oscillation source into the polar stratosphere

    Manifestations of Different El Niño Types in the Dynamics of the Extratropical Stratosphere

    No full text
    The behavior of planetary waves and their influence on the global circulation of the Northern Hemisphere during different El Niño types is studied. Three sets of five boreal winters were chosen for each El Niño type: Modoki I and II and canonical El Niño. Based on data of the Japanese 55-year Reanalysis and the Modern-Era Retrospective Analysis for Research and Applications, the spatio-temporal structure of planetary waves and the residual mean circulation were analyzed. The results show that the canonical El Niño type is characterized by the weakest wave activity in March. It is also demonstrated that warming of the polar stratosphere, accompanied by maximizing wave activity and weakening of the zonal wind, may lead to earlier stratospheric polar vortex collapse and the early spring transition under Modoki I conditions. This study is the next step in understanding of the so-called long-range teleconnections, consisting of the propagation of a signal from the tropical El Niño Southern Oscillation source into the polar stratosphere
    corecore