10 research outputs found

    Technological mineralogy: development of a comprehensive assessment of titanium ores (exemplified by the Pizhemskoye deposit)

    Get PDF
    Technological mineralogy of titanium ores is the basis for assessing their complexity. It enables, from a unified standpoint, to trace the entire course of changes in mineral matter through operating procedures, including beneficiation, processing, and obtaining target industrial products. The study targets are Pizhemskoye ilmenite-leucoxene sandstones, which are distinguished by a complex polymineral composition. Along with the main ore components, there are other metals with different speciation (isomorphic admixture, independent mineral phases). The optimal set of mineralogical analysis methods for the predictive assessment of their further use is substantiated exemplified by titanium ores of the Pizhemskoye deposit, which are complex, noted for a variable content of iron oxides and contain rare earth metals. Examinations by X-ray phase analysis and scanning electron microscopy confirm that the main titanium phases of sandstones are pseudorutile and a polymineral aggregate, “leucoxene”. Considering the granulometric peculiarities of the magnetic and non-magnetic fractions of the gravity concentrate, the prospects of technologies for processing titanium raw materials are discussed. Along with the problems of obtaining high-quality raw materials, the transformations of mineral phases as a result of extreme impacts and their physicochemical properties as a consequence of isomorphic substitution of a part of Ti atoms with natural modifier agents (Fe and V) in the synthesis of titanium oxide nanostructures for industrial applications are considered (photocatalytic nanoreactor)

    Mullite production: phase transformations of kaolinite, thermodynamics of the process

    Get PDF
    The growing demand for mullite raw materials, which meet industrial requirements originates the search for new and alternative sources, as well as efficient technologies for obtaining the target products (nanocomposites). The article suggests a method for obtaining mullite from kaolinite experimentally (Vezhayu-Vorykvinsky deposit, Russia). Structural kaolinite transformations (Al-Si-O-Me system), mineral phases transformations, and thermodynamics of the process have been studied. Based on the estimation of the thermodynamics of the reactions, the preferable reaction of mullite formation was determined. The article shows, that formation of the target product, mullite nanocomposite, has several intermediate phases (metakaolinite, pseudomullite). The transformations of the initial kaolinite structure include the removal of structural water and separation of the silica-oxygen tetrahedral and alumina-oxygen octahedral layers, the decomposition into free oxides, breaking of bonds between the silica-oxygen tetrahedrons and the partial increase in the coordination number of aluminium ions, the formation of mullite and cristobalite from free oxides. The proposed approach controls the ratio of Al2O3 and SiO2 phases at certain stages, which will further improve the mechanical and other properties of the matrix of the obtained raw materials for the target prototypes of industrial products

    E-LIBRARY OF A TECHNICAL UNIVERSITY: PROBLEMS AND PROSPECTS

    No full text
    The paper presents an analysis of the scientific and educational resources of Tomsk Polytechnic University, first of all, there are discussing the different types of training materials developed by the staff of the University. In conditions of open education the information is rapidly changing. Thus, the educational content should not only be available to students in accordance with the requirements of the Federal Service for education and science, but also become the most convenient when working in remote access

    TRANSLATIONAL REVIEW Immunotherapy for Malignant Pleural Mesothelioma Current Status and Future Prospects

    No full text
    Abstract Malignant pleural mesothelioma (MPM) is a rare malignancy of the pleura that is frequently resistant to conventional therapies. Immunotherapy is a promising investigational approach for MPM that has shown some evidence of clinical benefit in select patients. However, tumor-induced immunosuppression is likely a major impediment to achieving optimal clinical responses to immunotherapeutic intervention. MPM contains a variable degree of infiltrating T-regulatory cells and M2 macrophages, which are believed to facilitate tumor evasion from the host immune system. Additional immunosuppressive factors identified in other human tumor types, such as tumor-associated programmed death ligand-1 expression, may be relevant for investigation in MPM. Conventional cytoreductive therapies, such as radiation, chemotherapy, and surgery, may play a critical role in successful immunotherapeutic strategies by ablating intratumoral and/or systemic immunosuppressive factors, thus creating a host environment more amenable to immunotherapy. This article reviews the immunotherapeutic approaches being evaluated in patients with MPM and discusses how immunotherapy might be rationally combined with conventional tumor cytoreductive therapies for this disease
    corecore