8 research outputs found

    Nanostructured Polyelectrolyte Complexes Based on Water-Soluble Thiacalix[4]Arene and Pillar[5]Arene: Self-Assembly in Micelleplexes and Polyplexes at Packaging DNA

    No full text
    Controlling the self-assembly of polyfunctional compounds in interpolyelectrolyte aggregates is an extremely challenging task. The use of macrocyclic compounds offers new opportunities in design of a new generation of mixed nanoparticles. This approach allows creating aggregates with multivalent molecular recognition, improved binding efficiency and selectivity. In this paper, we reported a straightforward approach to the synthesis of interpolyelectrolytes by co-assembling of the thiacalix[4]arene with four negatively charged functional groups on the one side of macrocycle, and pillar[5]arene with 10 ammonium groups located on both sides. Nanostructured polyelectrolyte complexes show effective packaging of high-molecular DNA from calf thymus. The interaction of co-interpolyelectrolytes with the DNA is completely different from the interaction of the pillar[5]arene with the DNA. Two different complexes with DNA, i.e., micelleplex- and polyplex-type, were formed. The DNA in both cases preserved its secondary structure in native B form without distorting helicity. The presented approach provides important advantage for the design of effective biomolecular gene delivery systems

    Self-assembly of chiral fluorescent nanoparticles based on water-soluble L-tryptophan derivatives of p-tert-butylthiacalix[4]arene

    No full text
    New water-soluble tetra-substituted derivatives of p-tert-butylthiacalix[4]arene containing fragments of L-tryptophan in cone and 1,3-alternate conformations were obtained. It was shown that the resulting compounds form stable, positively charged aggregates of 86–134 nm in diameter in water at a concentration of 1 × 10−4 M as confirmed by dynamic light scattering, scanning electron microscopy and transmission electron microscopy. It was established that these aggregates are fluorescently active and chiral. A distinctive feature of the compounds is the pronounced dependence of their spectral (emission and chiroptical) properties on the polarity of the solvent and the length of the linker between the macrocyclic and fluorophore parts of the molecule

    Toward Pathogenic Biofilm Suppressors: Synthesis of Amino Derivatives of Pillar[5]arene and Supramolecular Assembly with DNA

    No full text
    New amino derivatives of pillar[5]arene were obtained in three stages with good yields. It was shown that pillar[5]arene containing thiaether and tertiary amino groups formed supramolecular complexes with low molecular weight model DNA. Pillar[5]arene formed complexes with a DNA nucleotide pair at a ratio of 1:2 (macrocycle/DNA base pairs), as demonstrated by UV-visible and fluorescence spectroscopy. The association constants of pillar[5]arene with DNA were lgKass1:1 = 2.38 and lgKass1:2 = 5.07, accordingly. By using dynamic light scattering and transmission electron microscopy, it was established that the interaction of pillar[5]arene containing thiaether and tertiary amino groups (concentration of 10−5 M) with a model nucleic acid led to the formation of stable nanosized macrocycle/DNA associates with an average particle size of 220 nm. It was shown that the obtained compounds did not exhibit a pronounced toxicity toward human adenocarcinoma cells (A549) and bovine lung epithelial cells (LECs). The hypothesis about a possible usage of the synthesized macrocycle for the aggregation of extracellular bacterial DNA in a biofilm matrix was confirmed by the example of St. Aureus. It was found that pillar[5]arene at a concentration of 10−5 M was able to reduce the thickness of the St. Aureus biofilm by 15%

    Toward Pathogenic Biofilm Suppressors: Synthesis of Amino Derivatives of Pillar[5]arene and Supramolecular Assembly with DNA

    No full text
    New amino derivatives of pillar[5]arene were obtained in three stages with good yields. It was shown that pillar[5]arene containing thiaether and tertiary amino groups formed supramolecular complexes with low molecular weight model DNA. Pillar[5]arene formed complexes with a DNA nucleotide pair at a ratio of 1:2 (macrocycle/DNA base pairs), as demonstrated by UV-visible and fluorescence spectroscopy. The association constants of pillar[5]arene with DNA were lgKass1:1 = 2.38 and lgKass1:2 = 5.07, accordingly. By using dynamic light scattering and transmission electron microscopy, it was established that the interaction of pillar[5]arene containing thiaether and tertiary amino groups (concentration of 10−5 M) with a model nucleic acid led to the formation of stable nanosized macrocycle/DNA associates with an average particle size of 220 nm. It was shown that the obtained compounds did not exhibit a pronounced toxicity toward human adenocarcinoma cells (A549) and bovine lung epithelial cells (LECs). The hypothesis about a possible usage of the synthesized macrocycle for the aggregation of extracellular bacterial DNA in a biofilm matrix was confirmed by the example of St. Aureus. It was found that pillar[5]arene at a concentration of 10−5 M was able to reduce the thickness of the St. Aureus biofilm by 15%

    Towards Universal Stimuli-Responsive Drug Delivery Systems: Pillar[5]arenes Synthesis and Self-Assembly into Nanocontainers with Tetrazole Polymers

    No full text
    In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures—pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers
    corecore