8 research outputs found

    Extracellular vesicles enhance pulmonary transduction of stably associated adeno‐associated virus following intratracheal administration

    No full text
    Abstract Adeno‐associated virus (AAV) vector has shown multiple clinical breakthroughs, but its clinical implementation in inhaled gene therapy remains elusive due to difficulty in transducing lung airway cells. We demonstrate here AAV serotype 6 (AAV6) associated with extracellular vesicles (EVs) and secreted from vector‐producing HEK‐293 cells during vector preparation (EVAAV6) as a safe and highly efficacious gene delivery platform for inhaled gene therapy applications. Specifically, we discovered that EVAAV6 provided markedly enhanced reporter transgene expression in mucus‐covered air‐liquid interface (ALI) cultures of primary human bronchial and nasal epithelial cells as well as in mouse lung airways compared to standard preparations of AAV6 alone. Of note, AAV6 has been previously shown to outperform other clinically tested AAV serotypes, including those approved by the FDA for treating non‐lung diseases, in transducing ALI cultures of primary human airway cells. We provide compelling experimental evidence that the superior performance of EVAAV6 is attributed to the ability of EV to facilitate mucus penetration and cellular entry/transduction of AAV6. The tight and stable linkage between AAV6 and EVs appears essential to exploit the benefits of EVs given that a physical mixture of individually prepared EVs and AAV6 failed to mediate EV‐AAV6 interactions or to enhance gene transfer efficacy

    Pharmacokinetics and biodistribution of extracellular vesicles administered intravenously and intranasally to Macaca nemestrina

    No full text
    Abstract Extracellular vesicles (EVs) have potential in disease treatment since they can be loaded with therapeutic molecules and engineered for retention by specific tissues. However, questions remain on optimal dosing, administration and pharmacokinetics. Previous studies have addressed biodistribution and pharmacokinetics in rodents, but little evidence is available for larger animals. Here, we investigated the pharmacokinetics and biodistribution of Expi293F‐derived EVs labelled with a highly sensitive nanoluciferase reporter (palmGRET) in a non‐human primate model (Macaca nemestrina), comparing intravenous (IV) and intranasal (IN) administration over a 125‐fold dose range. We report that EVs administered IV had longer circulation times in plasma than previously reported in mice and were detectable in cerebrospinal fluid after 30–60 min. EV association with peripheral blood mononuclear cells, especially B‐cells, was observed as early as 1‐min post‐administration. EVs were detected in liver and spleen within 1 h of IV administration. However, IN delivery was minimal, suggesting that pretreatment approaches may be needed in large animals. Furthermore, EV circulation times strongly decreased after repeated IV administration, possibly due to immune responses and with clear implications for xenogeneic EV‐based therapeutics. We hope that our findings from this baseline study in macaques will help to inform future research and therapeutic development of EVs

    A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants

    No full text
    Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster (Mesocricetus auratus) model of COVID-19. Intranasal immunization resulted in high titres of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titres in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches

    A bacterial extracellular vesicle-based intranasal vaccine against SARS-CoV-2 protects against disease and elicits neutralizing antibodies to wild-type and Delta variants

    No full text
    vaccines include mRNA-containing lipid nanoparticles or adenoviral vectors that encode the SARS-CoV-2 Several vaccines have been introduced to combat the coronavirus infectious disease-2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Current SARS-CoV-2 Spike (S) protein of SARS-CoV-2, inactivated virus, or protein subunits. Despite growing success in worldwide vaccination efforts, additional capabilities may be needed in the future to address issues such as stability and storage requirements, need for vaccine boosters, desirability of different routes of administration, and emergence of SARS-CoV-2 variants such as the Delta variant. Here, we present a novel, well-characterized SARS-CoV-2 vaccine candidate based on extracellular vesicles (EVs) of Salmonella typhimurium that are decorated with the mammalian cell culture-derived Spike receptor-binding domain (RBD). RBD-conjugated outer membrane vesicles (RBD-OMVs) were used to immunize the golden Syrian hamster (Mesocricetus auratus) model of COVID-19. Intranasal immunization resulted in high titers of blood anti-RBD IgG as well as detectable mucosal responses. Neutralizing antibody activity against wild-type and Delta variants was evident in all vaccinated subjects. Upon challenge with live virus, hamsters immunized with RBD-OMV, but not animals immunized with unconjugated OMVs or a vehicle control, avoided body mass loss, had lower virus titers in bronchoalveolar lavage fluid, and experienced less severe lung pathology. Our results emphasize the value and versatility of OMV-based vaccine approaches

    Exosomes, Microvesicles, and Other Extracellular Vesicles-A Keystone Symposia Report

    No full text
    Extracellular vesicles (EVs) are small, lipid-bilayer-bound particles released by cells that can contain important bioactive molecules, including lipids, RNAs, and proteins. Once released in the extracellular environment, EVs can act as messengers locally as well as to distant tissues to coordinate tissue homeostasis and systemic responses. There is a growing interest in not only understanding the physiology of EVs as signaling particles but also leveraging them as minimally invasive diagnostic and prognostic biomarkers (e.g., they can be found in biofluids) and drug-delivery vehicles. On October 30-November 2, 2022, researchers in the EV field convened for the Keystone symposium Exosomes, Microvesicles, and Other Extracellular Vesicles to discuss developing standardized language and methodology, new data on the basic biology of EVs and potential clinical utility, as well as novel technologies to isolate and characterize EVs
    corecore