880 research outputs found
Testing over-representation of observations in subsets of a DEA technology
This paper proposes a test for whether data are over-represented in a given production zone, i.e. a subset of a production possibility set which has been estimated using the non-parametric Data Envelopment Analysis (DEA) approach. A binomial test is used that relates the number of observations inside such a zone to a discrete probability weighted relative volume of that zone. A Monte Carlo simulation illustrates the performance of the proposed test statistic and suggests good estimation of both facet probabilities and the assumed common inefficiency distribution in a three dimensional input space.Data Envelopment Analysis (DEA); Over-representation; Data density; Binomial test; Convex hull
Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology
植物を支える「共生ネットワーク」は地上と地下で構造が違う --見えてきた地下生物圏の構造--. 京都大学プレスリリース. 2015-10-26.In nature, plants and their pollinating and/or seed-dispersing animals form complex interaction networks. The commonly observed pattern of links between specialists and generalists in these networks has been predicted to promote species coexistence. Plants also build highly species-rich mutualistic networks below ground with root-associated fungi, and the structure of these plant–fungus networks may also affect terrestrial community processes. By compiling high-throughput DNA sequencing data sets of the symbiosis of plants and their root-associated fungi from three localities along a latitudinal gradient, we uncovered the entire network architecture of these interactions under contrasting environmental conditions. Each network included more than 30 plant species and hundreds of mycorrhizal and endophytic fungi belonging to diverse phylogenetic groups. The results were consistent with the notion that processes shaping host-plant specialization of fungal species generate a unique linkage pattern that strongly contrasts with the pattern of above-ground plant–partner networks. Specifically, plant–fungus networks lacked a “nested” architecture, which has been considered to promote species coexistence in plant–partner networks. Rather, the below-ground networks had a conspicuous “antinested” topology. Our findings lead to the working hypothesis that terrestrial plant community dynamics are likely determined by the balance between above-ground and below-ground webs of interspecific interactions
Geographic patterns in plant-pollinator mutualistic networks
. Recent reviews of plant–pollinator mutualistic networks showed that gen- eralization is a common pattern in this type of interaction. Here we examine the ecological correlates of generalization patterns in plant–pollinator networks, especially how interaction patterns covar y with latitude, elevation, and insularity. We review the few published anal- yses of whole networks and include unpublished material, analyzing 29 complete plant– pollinator networks that encompass arctic, alpine, temperate, Mediterranean, and subtrop- ical–tropical areas. The number of interactions obser ved (I) was a linear function of network size (M ) the maximum number of interactions: ln I = 0.575 + 0.61 ln M; R2 = 0.946. The connectance (C), the fraction of obser ved interactions relative to the total possible, decreased exponentially with species richness, the sum of animal and plant species in each community (A + P): C = 13.83 exp[—0.003(A + P)]. After controlling for species richness, the residual connectance was significantly lower in highland (>1500 m elevation) than in lowland networks and differed marginally among biogeographic regions, with both alpine and trop- ical networks showing a trend for lower residual connectance. The two Mediterranean networks showed the highest residual connectance. After correcting for variation in network size, plant species were shown to be more generalized at higher latitude and lowland habitats, but showed increased specialization on islands. Oceanic island networks showed an im- poverishment of potential animal pollinators (lower ratio of animal to plant species, A : P, compared to mainland networks) associated with this trend of increased specialization. Plants, but not their flower-visiting animals, supported the often-repeated statements about higher specificity in the tropics than at higher latitudes. The pattern of interaction build- up as diversity increases in pollination networks does not differ appreciably from other mutualisms, such as plant–seed disperser networks or more complex food webs.Peer reviewe
Strong, Long-Term Temporal Dynamics of an Ecological Network
Nature is organized into complex, dynamical networks of species and their interactions, which may influence diversity and stability. However, network research is, generally, short-term and depict ecological networks as static structures only, devoid of any dynamics. This hampers our understanding of how nature responds to larger disturbances such as changes in climate. In order to remedy this we studied the long-term (12-yrs) dynamics of a flower-visitation network, consisting of flower-visiting butterflies and their nectar plants. Global network properties, i.e. numbers of species and links, as well as connectance, were temporally stable, whereas most species and links showed a strong temporal dynamics. However, species of butterflies and plants varied bimodally in their temporal persistance: Sporadic species, being present only 1–2(-5) years, and stable species, being present (9-)11–12 years, dominated the networks. Temporal persistence and linkage level of species, i.e. number of links to other species, made up two groups of species: Specialists with a highly variable temporal persistence, and temporally stable species with a highly variable linkage level. Turnover of links of specialists was driven by species turnover, whereas turnover of links among generalists took place through rewiring, i.e. by reshuffling existing interactions. However, in spite of this strong internal dynamics of species and links the network appeared overall stable. If this global stability-local instability phenomenon is general, it is a most astonishing feature of ecological networks
Temporal development and collapse of an Arctic plant-pollinator network
<p>Abstract</p> <p>Background</p> <p>The temporal dynamics and formation of plant-pollinator networks are difficult to study as it requires detailed observations of how the networks change over time. Understanding the temporal dynamics might provide insight into sustainability and robustness of the networks and how they react to environmental changes, such as global warming. Here we study an Arctic plant-pollinator network in two consecutive years using a simple mathematical model and describe the temporal dynamics (daily assembly and disassembly of links) by random mechanisms.</p> <p>Results</p> <p>We develop a mathematical model with parameters governed by the probabilities for entering, leaving and making connections in the network and demonstrate that A. The dynamics is described by very similar parameters in both years despite a strong turnover in the composition of the pollinator community and different climate conditions, B. There is a drastic change in the temporal behaviour a few days before the end of the season in both years. This change leads to the collapse of the network and does not correlate with weather parameters, C. We estimate that the number of available pollinator species is about 80 species of which 75-80% are observed in each year, D. The network does not reach an equilibrium state (as defined by our model) before the collapse set in and the season is over.</p> <p>Conclusion</p> <p>We have shown that the temporal dynamics of an Arctic plant-pollinator network can be described by a simple mathematical model and that the model allows us to draw biologically interesting conclusions. Our model makes it possible to investigate how the network topology changes with changes in parameter values and might provide means to study the effect of climate on plant-pollinator networks.</p
Response to Comment on ‘‘Asymmetric Coevolutionary Networks Facilitate Biodiversity Maintenance’’
Mutualistic networks are characterized by weak and asymmetric interactions, which a simple model predicts will facilitate species coexistence. Holland et al. propose a more complex model and argue that coexistence is independent of mutualism strength. However, we show that mutualism
strength still plays an important role in their model and that it significantly decreases with species richness as predicted.Peer reviewe
Anmeldelse af: Lars Albinus, Religion as a philosophical matter – concerns about truth, name and habitation
Anmeldelse af: Lars Albinus, Religion as a philosophical matter – concerns about truth, name and habitation, de Gruyter open 2016, 249 s., hardcover £ 107, kan downloades gratis på www.degruyter.co
- …