874 research outputs found

    Magnetic vortex-antivortex crystals generated by spin-polarized current

    Full text link
    We study vortex pattern formation in thin ferromagnetic films under the action of strong spin-polarized currents. Considering the currents which are polarized along the normal of the film plane, we determine the critical current above which the film goes to a saturated state with all magnetic moments being perpendicular to the film plane. We show that stable square vortex-antivortex superlattices (\emph{vortex crystals}) appears slightly below the critical current. The melting of the vortex crystal occurs with current further decreasing. A mechanism of current-induced periodic vortex-antivortex lattice formation is proposed. Micromagnetic simulations confirm our analytical results with a high accuracy.Comment: 12 pages, 11 figure

    Unidirectional tilt of domain walls in equilibrium in biaxial stripes with Dzyaloshinskii–Moriya interaction

    Get PDF
    The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in out-of-plane magnetized stripes with biaxial anisotropy and Dzyaloshinskii–Moriya interaction (DMI). The tilt is a result of the interplay between the in-plane easy-axis anisotropy and DMI. We show that the additional anisotropy and DMI prefer different domain wall structure: anisotropy links the magnetization azimuthal angle inside the domain wall with the anisotropy direction in contrast to DMI, which prefers the magnetization perpendicular to the domain wall. Their balance with the energy gain due to domain wall extension defines the equilibrium magnetization the domain wall tilting. We demonstrate that the Walker field and the corresponding Walker velocity of the domain wall can be enhanced in the system supporting tilted walls

    Unidirectional tilt of domain walls in equilibrium in biaxial stripes with Dzyaloshinskii-Moriya interaction

    Get PDF
    The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in out-of-plane magnetized stripes with biaxial anisotropy and Dzyaloshinskii--Moriya interaction (DMI). The tilt is a result of the interplay between the in-plane easy-axis anisotropy and DMI. We show that the additional anisotropy and DMI prefer different domain wall structure: anisotropy links the magnetization azimuthal angle inside the domain wall with the anisotropy direction in contrast to DMI, which prefers the magnetization perpendicular to the domain wall plane. Their balance with the energy gain due to domain wall extension defines the equilibrium magnetization the domain wall tilting. We demonstrate that the Walker field and the corresponding Walker velocity of the domain wall can be enhanced in the system supporting tilted walls.Comment: 5 pages, 3 figures, supplementary material

    Topologically stable magnetization states on a spherical shell: curvature-stabilized skyrmions

    No full text
    Topologically stable structures include vortices in a wide variety of matter, skyrmions in ferro- and antiferromagnets, and hedgehog point defects in liquid crystals and ferromagnets. These are characterized by integer-valued topological quantum numbers. In this context, closed surfaces are a prominent subject of study as they form a link between fundamental mathematical theorems and real physical systems. Here we perform an analysis on the topology and stability of equilibrium magnetization states for a thin spherical shell with easy-axis anisotropy in normal directions. Skyrmion solutions are found for a range of parameters. These magnetic skyrmions on a spherical shell have two distinct differences compared to their planar counterpart: (i) they are topologically trivial and (ii) can be stabilized by curvature effects, even when Dzyaloshinskii-Moriya interactions are absent. Due to its specific topological nature a skyrmion on a spherical shell can be simply induced by a uniform external magnetic field

    Strain anisotropy and magnetic domains in embedded nanomagnets

    Get PDF
    Nanoscale modifications of strain and magnetic anisotropy can open pathways to engineering magnetic domains for device applications. A periodic magnetic domain structure can be stabilized in sub‐200 nm wide linear as well as curved magnets, embedded within a flat non‐ferromagnetic thin film. The nanomagnets are produced within a non‐ferromagnetic B2‐ordered Fe60Al40 thin film, where local irradiation by a focused ion beam causes the formation of disordered and strongly ferromagnetic regions of A2 Fe60Al40. An anisotropic lattice relaxation is observed, such that the in‐plane lattice parameter is larger when measured parallel to the magnet short‐axis as compared to its length. This in‐plane structural anisotropy manifests a magnetic anisotropy contribution, generating an easy‐axis parallel to the short axis. The competing effect of the strain and shape anisotropies stabilizes a periodic domain pattern in linear as well as spiral nanomagnets, providing a versatile and geometrically controllable path to engineering the strain and thereby the magnetic anisotropy at the nanoscale
    corecore