8 research outputs found

    Long-term impact of fecal transplantation in healthy volunteers

    Get PDF
    Fecal microbiota transplantation (FMT) has been recently approved by FDA for the treatment of refractory recurrent clostridial colitis (rCDI). Success of FTM in treatment of rCDI led to a number of studies investigating the effectiveness of its application in the other gastrointestinal diseases. However, in the majority of studies the effects of FMT were evaluated on the patients with initially altered microbiota. The aim of our study was to estimate effects of FMT on the gut microbiota composition in healthy volunteers and to monitor its long-term outcomes.Peer ReviewedPostprint (published version

    The Gene Expression Profile Differs in Growth Phases of the Bifidobacterium Longum Culture

    No full text
    To date, transcriptomics have been widely and successfully employed to study gene expression in different cell growth phases of bacteria. Since bifidobacteria represent a major component of the gut microbiota of a healthy human that is associated with numerous health benefits for the host, it is important to study them using transcriptomics. In this study, we applied the RNA-Seq technique to study global gene expression of B. longum at different growth phases in order to better understand the response of bifidobacterial cells to the specific conditions of the human gut. We have shown that in the lag phase, ABC transporters, whose function may be linked to active substrate utilization, are increasingly expressed due to preparation for cell division. In the exponential phase, the functions of activated genes include synthesis of amino acids (alanine and arginine), energy metabolism (glycolysis/gluconeogenesis and nitrogen metabolism), and translation, all of which promote active cell division, leading to exponential growth of the culture. In the stationary phase, we observed a decrease in the expression of genes involved in the control of the rate of cell division and an increase in the expression of genes involved in defense-related metabolic pathways. We surmise that the latter ensures cell survival in the nutrient-deprived conditions of the stationary growth phase

    Draft genomes of Enterococcus faecium strains isolated from human feces before and after eradication therapy against Helicobacter pylori

    No full text
    The abundance of Enterococci in the human intestinal microbiota environment is usually < 0.1% of the total bacterial fraction. The multiple resistance to antibiotics of the opportunistic Enterococcus spp. is alarming for the world medical community because of their high prevalence among clinically significant strains of microorganisms. Enterococci are able to collect different mobile genetic elements and transmit resistance to antibiotics to wide range of Gram-positive and Gram-negative species of microorganisms, including the transmission of vancomycin resistance to methicillin-resistant strains of Staphylococcus aureus. The number of infections caused by antibiotics resistant strains of Enterococcus spp. is increasing. Here we present a draft genomes of Enterococcus faecium strains. These strains were isolated from human feces before and after (1 month) Helicobacter pylori eradication therapy. The samples were subject to whole-genome sequencing using Illumina HiSeq. 2500 platform. The data is available at NCBI https://www.ncbi.nlm.nih.gov/bioproject/PRJNA412824

    An Efficient 2D Protocol for Differentiation of iPSCs into Mature Postmitotic Dopaminergic Neurons: Application for Modeling Parkinson’s Disease

    No full text
    About 15% of patients with parkinsonism have a hereditary form of Parkinson’s disease (PD). Studies on the early stages of PD pathogenesis are challenging due to the lack of relevant models. The most promising ones are models based on dopaminergic neurons (DAns) differentiated from induced pluripotent stem cells (iPSCs) of patients with hereditary forms of PD. This work describes a highly efficient 2D protocol for obtaining DAns from iPSCs. The protocol is rather simple, comparable in efficiency with previously published protocols, and does not require viral vectors. The resulting neurons have a similar transcriptome profile to previously published data for neurons, and have a high level of maturity marker expression. The proportion of sensitive (SOX6+) DAns in the population calculated from the level of gene expression is higher than resistant (CALB+) DAns. Electrophysiological studies of the DAns confirmed their voltage sensitivity and showed that a mutation in the PARK8 gene is associated with enhanced store-operated calcium entry. The study of high-purity DAns differentiated from the iPSCs of patients with hereditary PD using this differentiation protocol will allow for investigators to combine various research methods, from patch clamp to omics technologies, and maximize information about cell function in normal and pathological conditions

    Data on gut metagenomes of the patients with Helicobacter pylori infection before and after the antibiotic therapy

    No full text
    Antibiotic therapy can lead to the disruption of gut microbiota community with possible negative outcomes for human health. One of the diseases for which the treatment scheme commonly included antibiotic intake is Helicobacter pylori infection. The changes in taxonomic and functional composition of microbiota in patients can be assessed using “shotgun” metagenomic sequencing. Ten stool samples were collected from 4 patients with Helicobacter pylori infection before and directly after the H. pylori eradication course. Additionally, for two of the subjects, the samples were collected 1 month after the end of the treatment. The samples were subject to “shotgun” (whole-genome) metagenomic sequencing using Illumina HiSeq platform. The reads are deposited in the ENA (project ID: PRJEB18265)

    Data on gut metagenomes of the patients with Helicobacter pylori infection before and after the antibiotic therapy

    No full text
    Antibiotic therapy can lead to the disruption of gut microbiota community with possible negative outcomes for human health. One of the diseases for which the treatment scheme commonly included antibiotic intake is Helicobacter pylori infection. The changes in taxonomic and functional composition of microbiota in patients can be assessed using “shotgun” metagenomic sequencing. Ten stool samples were collected from 4 patients with Helicobacter pylori infection before and directly after the H. pylori eradication course. Additionally, for two of the subjects, the samples were collected 1 month after the end of the treatment. The samples were subject to “shotgun” (whole-genome) metagenomic sequencing using Illumina HiSeq platform. The reads are deposited in the ENA (project ID: PRJEB18265)
    corecore