649 research outputs found

    Breit-Wheeler Process in Intense Short Laser Pulses

    Full text link
    Energy-angular distributions of electron-positron pair creation in collisions of a laser beam and a nonlaser photon are calculated using the SS-matrix formalism. The laser field is modeled as a finite pulse, similar to the formulation introduced in our recent paper in the context of Compton scattering [Phys. Rev. A {\bf 85}, 062102 (2012)]. The nonperturbative regime of pair creation is considered here. The energy spectra of created particles are compared with the corresponding spectra obtained using the modulated plane wave approximation for the driving laser field. A very good agreement in these two cases is observed, provided that the laser pulse is sufficiently long. For short pulse durations, this agreement breaks down. The sensitivity of pair production to the polarization of a driving pulse is also investigated. We show that in the nonperturbative regime, the pair creation yields depend on the polarization of the pulse, reaching their maximal values for the linear polarization. Therefore, we focus on this case. Specifically, we analyze the dependence of pair creation on the relative configuration of linear polarizations of the laser pulse and the nonlaser photon. Lastly, we investigate the carrier-envelope phase effect on angular distributions of created particles, suggesting the possibility of phase control in relation to the pair creation processes.Comment: 13 pages, 8 figure

    Interior error estimate for periodic homogenization

    Get PDF
    In a previous article about the homogenization of the classical problem of diff usion in a bounded domain with su ciently smooth boundary we proved that the error is of order ϵ1/2\epsilon^{1/2}. Now, for an open set with su ciently smooth boundary C1,1C^{1,1} and homogeneous Dirichlet or Neuman limits conditions we show that in any open set strongly included in the error is of order ϵ\epsilon. If the open set ΩRn\Omega\subset R^n is of polygonal (n=2) or polyhedral (n=3) boundary we also give the global and interrior error estimates

    IMPLEMENTATION AND TESTING OF A POWER MATRIX-BASED WAVE ENERGY CONVERSION MODEL AND THE EFFECT SIMULATED ON THE WAVE FIELD — CASE STUDY OF LAGUNA, SC, BRAZIL

    Get PDF
    Electrical energy has become an essential resource for mankind and, as the population and technological dependency grow, also does the electricity demand. This necessity boosted numerous studies which focus on clean and renewable energy sources. Ocean wave energy is one of the most environmentally friendly sources of energy since it does not emit pollutants to the atmosphere and does not produce harmful waste. Another positive point about ocean waves is that they are inexhaustible, therefore a power plant could, potentially, provide energy indefinitely. Hence the object of this study is to estimate the wave energy reduction caused by the presence of wave energy conversion (WEC) devices near the coastline of Laguna, Brazil. In order to study the coastal impact of a WEC farm, the third generation sea state model TOMAWAC was used to simulate the waves on the Southern Brazilian Shelf under two different conditions, with and without the presence of an array of WECs. The results show that the mean significant wave height in the blockaded area undergoes a slight drop, caused by the presence of the WECs, which do not appear in the other scenario. But this reduction of the significant wave height is negligible compared to the order of magnitude of the wave height itself

    Particle dynamics inside shocks in Hamilton-Jacobi equations

    Full text link
    Characteristics of a Hamilton-Jacobi equation can be seen as action minimizing trajectories of fluid particles. For nonsmooth "viscosity" solutions, which give rise to discontinuous velocity fields, this description is usually pursued only up to the moment when trajectories hit a shock and cease to minimize the Lagrangian action. In this paper we show that for any convex Hamiltonian there exists a uniquely defined canonical global nonsmooth coalescing flow that extends particle trajectories and determines dynamics inside the shocks. We also provide a variational description of the corresponding effective velocity field inside shocks, and discuss relation to the "dissipative anomaly" in the limit of vanishing viscosity.Comment: 15 pages, no figures; to appear in Philos. Trans. R. Soc. series

    ANALYSIS OF SHIP BEHAVIOR UNDER INFLUENCE OF WAVES AND CURRENTS

    Get PDF
    The most important environmental factors related to safety of ship and performance on high sea are surface winds and waves. In order to obtain an optimal trajectory of a ship route, it is a prerequisite to know the sea state condition, as well as, the behavior of the ship in waves and currents. The purpose of this study is to analyze the ship behavior under the influence of 3 different sea state conditions over the Southern Brazilian inner shelf near the Rio Grande coastal region. SHIPMOVE and TOMAWAC + TELEMAC3D system were simulated under three different wave scenarios. Day 4 showed the shortest traveled distance and lowest velocity. The sea state of Day 33 deflected the initial vessel path northeasterly and generated high rotational motions. Day 100 depicted the longest final displacement and highest average velocity, where this event showed the most smooth sea state condition. Lastly, the ship behavior seems to be strongly influenced by the sea state condition for the three events
    corecore