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Abstract.

In a previous article about the homogenization of the classical problem of diffusion in a bounded domain with sufficiently smooth

/2 Now, for an open set ! with sufficiently smooth boundary (Cl’l) and homogeneous

boundary we proved that the error is of order e
Dirichlet or Neuman limits conditions we show that in any open set strongly included in € the error is of order €. If the open set QCRrR"™

is of polygonal (n=2) or polyhedral (n=3) boundary we also give the global and interrior error estimates.

Résumé. Nous avons démontré dans un précédent article sur I’homogénéisation du probléeme type de la diffusion dans un domaine

/2 On montre maintenant pour un ouvert 2 de frontiere réguliere (C*!) avec les

borné de frontiere réguliere que l’erreur est d’ordre e
conditions aux limites homogenes de Dirichlet ou de Neumann que dans tout ouvert fortement inclus dans Q ’erreur est de ’ordre de
e. Si louvert QCR"™ est de frontiére polygonale (n=2) ou polyédrale (n=3) on donne également les estimations globale et intérieure de

Perreur.

Keywords : periodic homogenization, error estimate, unfolding method.

1. Introduction

This paper follows two previous studies [4,5] of the error estimates in the classical periodic homogeniza-
tion problem. The first error estimates in periodic homogenization problem have been given by Bensoussan,
Lions and Papanicolaou [1], by Oleinik, Shamaev and Yosifian [7], and by Cioranescu and Donato [3]. In all
these works, the result is proved under the assumption that the correctors belong to W>°(Y), Y =]0, 1["

being the reference cell. The estimate is of order /2.

The additional regularity of the correctors holds
true when the coefficients of the operator are very regular which is not necessarily the situation in homog-
enization. In [4] we obtained an error estimate without any regularity hypothesis on the correctors but we
supposed that the solution of the homogenized problem belonged to W2?(£2) (p > n). The exponent of € in
the error estimate is inferior to 1/2 and depends on n and p. In [5] we obtained an error estimate without
any regularity hypothesis on the correctors but we supposed that the solution of the homogenized problem
belonged to H?(€2). This holds true with a smooth boundary and homogeneous Dirichlet or Neuman limits

conditions. The exponent of ¢ in the error estimate is equal to 1/2.

The aim of this work is to give the interior error estimate and new error estimate with minimal hypothesis

on the boundary of Q.

The paper is organized as follows. Section 2 is dedicated to some projection theorems. Among them
Theorems 2.3 and 2.6 are essential tools to obtain new estimates. These theorems are related to the periodic
unfolding method (see [2] and [5]). We show that for any ¢ in H'(£), where Q is a bounded open set of
R™ with Lipschitz boundary, there exists a function QAﬁg in L2(Q; H;ET(Y)), such that the distance between
the unfolded 7:(V;¢) and V¢ + vy(Eg is of order ¢ in the space [L2(Y; (H'(€2)))]" (Theorem 2.3) and is
of order £ in the space [L2(Y; (H*(Q)))]", 0 < 5 < 1, (Theorem 2.6), provided that the norm of gradient ¢
in a neighbourhood (of thickness 4¢1/n) of the boundary of € is less than £!/2 in the first case and less than

£%/2 in the second case.



In Theorem 3.2 in Section 3.1, we suppose that €2 has a smooth boundary, that the right handside of the
homogenization problem belongs to L?(2) and we consider the homogeneous Dirichlet or Neumann limits
conditions. By transposition and thanks to Theorem 2.3 we show that the L? error estimate is of order ¢
and then we obtain the interior error estimate of the same order. The required condition in Theorem 2.3 is
obtained thanks to the estimates of Theorems 4.1 and 4.2 of [5].

In Theorem 3.3 in Section 3.2, we suppose that the domain  is of polygonal (n = 2) or polyhedral
(n = 3) boundary and the right handside of the homogenization problem in L?(Q2). We show that the H'
error estimate is at the most of order £'/# and that the L? and the interior error estimates are at the most

of order /2.

We use the notation of [2] and [5] throughout this study. In this article, the constants appearing in the

estimates are independent from e¢.

2. Preliminary results

Let 2 be a bounded domain in R™ with lipchitzian boundary. We put

Qop = {z €R™ | dist(z,00) < ky/ne},  Quj= {:c € R" | dist(x, Q) < kv/ne},  ke{l,2,3,4},
Q

= interior( U 5(§+7), E.={¢eZ" |c(£+Y)NQ#0], Y =0, 1[,

§EE.

where the open set Y =]0, 1[" is the reference cell and where € is a strictly positive real. We have
QCQ e,
For almost any x € R™, there exists a unique element in Z™ denoted [z] such that
x = [z] + {z}, {z} €Y.

The running point of €2 is denoted z, and the running point of Y is denoted y.

2.1 Projection theorems in L2(Y; (H'(Q))).

Lemma 2.1 : There exists a linear and continuous extension operator P. from Hl(Q) nto Hl(Q&g) such
that

1P oz, o) < CLIlz2@) +ElIVEl ond, oo

The constants depend only on n and OS).

Proof : There exists a finite open covering (€2;); of the boundary 9 such that for each j there exists a
Lipschitz diffeomorphism 6; which maps €, to the open set O =] — 1,1[*71x] — 1,1[ of R" and 2; N Q to
the open set O; =] —1,1[*"1x]0, 1[. To the covering of 9 we associate a partition of the unity

b; € CH(Qy), Z ¢ =1 in a neighbourhood of 99.
J

Let ¢ be in H*(£2). The function (¢;1)00; " belongs to H'(O.). We use a reflexion argument to extend this
function to an element Jj belonging to H!(O). In the neighbourhood of the boundary of Q the extension is

equal to Z% o #;. This immediately gives the estimates of Lemma 2.1. r
J



From now on any function belonging to H!(Q) will be extended to a function belonging to H' (2. 3). To

make the notation simpler the extention of function ¢ will still be denoted ¢.

In the sequel, we will make use of definitions and results from [2] and [5] concerning the periodic unfolding
method. Let us recall the definition of the unfolding operator 7. which asociates a function 72(¢) € L*(Q2xY)
to each function ¢ € L1(€.),

T-@)wy) =6(z[2] +2y)  foroeQandyey

We also recall the approximate integration formula

22) L=, =@

For the other properties of T, we refer the reader to [2] and [5].
Let ¢ € H'(Q) extended to Q.. We have defined the scale-splitting operators Q. and R. (see [2]). The
function Q.(¢) is the restriction to Q of Q:-interpolate of the discrete function M (¢)

<||v|| Vv e L'(Q.)

L1(Qcn)

My (¢)(x) = ﬁ/yqﬁ(s{g —I—Ez)dz x €N

and R.(¢) = ¢ — Q.(¢). The operator Q. is linear and continuous from H'(Q) to H'(Q) and we have the

estimates

1Qc (D)) < Clldllay ¢ — Qe(d)lr2) < CellVollr2y Vo € HY(Q).

The constants depend on n and 0.

Theorem 2.2 : Let ¢ be in H'(Q). There exists ¥ belonging to H,,.(Y; L*(Q)) such that
||{/1\8||H1(Y;L2(Q)) < C{l|¢ll2() + €llVolliL2yn }
(2.3) NTe(@) = Vel vy )y < CellldllLzo) + el Vol }
+ C\/E{”(bHLz(ﬁsz) + €||v¢||[L2(§£72)]n}

The constants depend only on n and 0f).

Proof : In this proof we use the same notation and the same ideas as in Proposition 3.3 of [5].

Theorem 2.2 is proved in two steps. We reintroduce the unfolding operators 7¢ ;, defined in [5], which for
any ¢ € H(2), allow us to estimate the difference between the restrictions to two neighbouring cells of the
unfolded of ¢ in L2(Y; (H'(Q))). Then we evaluate the periodic defect of the functions y — Tz(¢) (., y)
thanks to Theorem 2.2 of [5].

Let Ki =Y U (& +Y), i€ {l,...,n}. For any  in ©, the cell s([gy + K) is included in Q. .

We recall that the unfolding operator 7 ; from L?(€) 2) into L?(Q x K;) is defined by
9, = x
Vi € L*(Qe 2), Tei(W)(z,y) = 1/1(5 [E}Y + Ey) for x € Q and a. e. y € K.

The restriction of 7¢;(¢) to @ x Y is equal to the unfolded 7:(¢) and we have the following equalities in
L?(QxY):

3



Step one. Let us take 1 € L2(Q. 5). We evaluate the difference 7z ; (1) (., ..4-&) — Te.i(¢) in L2(Y; (H*(Q))).

For any ¥ € H'(Q), extended on (~26,1, a linear change of variables and the relations above give

for a. c. y €Y, t/7aWMLy+éDW@Mx: Toal)(@ + 6, y) ¥ (2)da
Q Q

Tei(¥) (2, y) ¥ (x — e€;)dx

Il
S~

1t-eé;
We deduce
| [{Ta@ ey +@) = Tes) )} = [ Tosw) {00~ =) - v}
Q Q

§C||7;z(1/))(,y)||Lz(§£1)||‘I’||L2(§“) fora. e yevy.

Since €2 is a bounded domain with lipschitzian boundary and since ¥ belongs to H 1((25,1) we have
¥l 2. ) < CVe{ll¥lL2) + IV 2@ }

24 ie{l,...,n}

[[W(. —eéi) — ¥[r2q) < Ce

Hax ’L2(Q)

hence
<T: Y+ €)= Tei(D) () s ¥ > )y 1)

/U‘ (o +8) — Tea () ()} 0
<Ce||V|| 122 1 Tei (V) ()| L2 (o) + C\/EH\I]HHI(Q)”ﬁ,i(w)(-ay)HLz(aE’l)'

We deduce that

17:() oy + &) = Tea() Wl < CellTea(@) o 0)lleze) + CVENT (D) Gl 2@, -

Which leads to the following estimate of the difference between 7T¢ ; () and one of its translated :

laxy

(2.5) 1T @)oo+ 8) = Tes@llpavamonyy < Celldll o, o) + CVEIRlLaa,

The constant depends only on n and on the boundary of €.

Step two. Let ¢ € H!(Q). The estimate (2.5) applied to ¢ and its partial derivatives give us

N Tei (@) o + &) = Tei (D) L2y oy < Cellléllrz) + el VOllizzyn b + C\/E||¢||Lz(§£72)
NTei(VO) (s + &) = Tei(VO) 2y a1y < CLElVOll L2 + \/5||V¢||[L2(§E,2)]n}

We recall that V (7z,i(¢)) = €7,i(Ve) (see [3]). The above estimates can also be written as follows :

NTei(@) (s e+ €)= Te (D vy )y < Cetlldllz) + ellVoll L2 + \/5||V¢||[L2(§£72)]n}
+C\/E||¢||L2(§€’2)

From these inequalities, for any ¢ € {1,...,n}, we deduce the estimate of the difference of the traces of
y — T=(9)(.,y) on the faces Y; and €; + Y;

Te(@) (s o+ E) = Tel D vz v i ) < CelllollLzo) + €lIVOlli2 @y }
+ C\/E{H(bHLZ(ﬁE’z) + 5||v¢||[L2(§€’2)]n}



It measures the periodic defect of y — T2(¢)(.,y). We decompose 7¢(¢) into the sum of an element belonging
to H.,(Y;L*(Q)) and an element belonging to (H'(Y;L?*(Q))) * (the orthogonal of H!, . (Y;L?(Q)) in

per

HY(Y; L?(Q)), see [5])

per

(2.6) To(¢) = e + by o € HL (YSIAQ), 6. € (HN(Y;LX Q)T

From the Riesz Theorem the dual space (H'()) is a Hilbert space isomorphic to H'(€2). The function

y — T=(4)(., y) takes its values in a finite dimensionnal space,

= Peelxel)

§EE.

where x¢(.) is the characteristic function of the cell £(¢ +Y) and where ¢_(..) € (Hl(Y))L (the orthogonal
of H! (Y) in HY(Y), see [5]). Hence the decomposing (2.6) is the same in H'(Y;(H'(Q))). As the

per

decomposing is orthogonal, we have

~ — 2
||w€||%{1(Y;L2(Q)) + ||¢a||§11(Y;L2(Q)) = ||7Z(¢>||?ql(y L2() S < C{l19llL2@) + el Volli2 @y }

Hence we have the first inequality (2.3) and an estimate of ¢, in H*(Y; L?(Q2)). From Theorem 2.2 of [5]
and (2.5) we obtain a finer estimate of ¢_ in H'(Y; (H'(R2))")

1B i v oy < Ce{l19llzay + elIVallizzp + VEIVSll o,y } + CVEI aga )

It is the second inequality in (2.3). r

Theorem 2.3 : For any ¢ € H'(Q), there exists ¢. € H, (Y L*()) such that

per

Dl (vir2)) < ClIVOlliLz@m,
||7;(vm¢ v ¢ Vy¢€|| L2 Hl(ﬂ) < CE||V¢||[L2(Q ]n + C\/_||v¢|| L2 Q 3)]

The constants depend only on n and 0.
Proof : Let ¢ € H'(2). The function ¢ is decomposed

¢ =0 +ep, where =09, (¢) and ¢ = éRg(qﬁ).

with the following estimate :

(2.8) IV@iL2@ym + [19llL2) + el Vol @ < ClIIVEll Lz @

We apply the Poincaré-Wirtinger inequality to the function ¢ in each cell of the form (£ 4+ K;) and of the
form (€ +Y) included in (AZE,g. We deduce that

||VQ€(¢)||[L2(Q 2)]71. = C||V¢|| L2(a 3)]™
= [IV8ll 2@, oy < IIV¢I|L2(Q o

5



We also have (see [3])

1
||9||L2(§E,2) = g”(b - Q8(¢)||L2(§€’2) < C||V¢||[L2(§E,3)]n

Theorem 3 applied to ¢ gives us the existence of an element . in H} (Y; L?(2)) such that

per

1@e 1 (vez2()) < ClIVEliL2@ns

(2.9)
172(8) — el (v @) < CellVollz2 + CVEIVOl 2@, ym

We evahlate ||7;(V(I)) - v(bH[LZ(Y,(Hl(Q)),)]"

From Lemma 2.2 we have

(2.10) H@xl (axz) H iy < eIVl r + OVEIVall g, .

0P
8:@-

From the definition of ® it results that y — 7;(
€ HY(Q), we have

E(S—z)(-,y)—My(gf) V> @) s /Q (aq) y) = Mé(a_q))}w
/Qg{ (aggl (8301)}
+/Q { a:c1 ( y)—Mé(g—i)}w

)(., y) is linear with respect to each variable. For any

Q’\
S

We have
/Q\Q {ﬁ(g—i)(.,y) ; My(gq) ) }1/} < C\/_||V¢||Lz(g 2" A2y + 1Vl 2@ }

Besides, as in Theorem 3.4 of [5] we show that
0P 0P
/ A7 (5 ) 6w = M5 ()} (0) < CelIVl ey 90 o
+ C\/E||V¢||L2(§EYS)]R{||1P||L2(sz) + IV L2 }

and eventually

Yy €Y, (8(1)

- a—m)(-’”*M ( azl)H vy < CElIVOlz @i + CVEITE o

Considering (2.10) and all the partial derivatives, we obtain

[Te(V®) = V|| L2y, 1 )y yn < CElVOl 20y + C\/E||V¢H[L2(§E,s)]"

Moreover we have

oy
8:01- -

¢ B
aniw_/aggniw_/g— ) HIY o)

C C
||Q||L2(6Q) < %HQHL?@)\EQ] + C\/g||v?||[L2(§El)]n < $||v¢||[L2(§53)]n

6



hence [[eV @[] g1 (a)y)n < CellVollL2 @y + C\/E||V¢||[L2(§5,s)]”" Thanks to (2.9) and to the above inequal-
ities the second estimate of (2.7) is proved. r
2.2 Projection theorems in L?(Y; (HS(Q))/), 0<s<1.

The space H*(Q2), 0 < s < 1, is defined by

|¢(x) — d(a")[?

H(Q) = {¢ € L2(Q) | P drds’ < +oo}.

QxQ

Equipped with the inner product

< @, >= /Q¢¢ +/Q 0 (¢(z) — Tix)lgﬁ(i)s vl )) drdz’

H*(Q) is a Hilbert separable space. We denote ||.||s,o the norm associated to this inner product.

As we have done in Lemma 2.1 we build a linear and continuous extension operator P from H*(Q2), 0 < s < 1,

into H*(f.,4) verifying
P, 5., < Cliglls0

The constant depends only on n, s and 0f2.

From now on any function belonging to H*(2) will be extended to a function belonging to H*(Q:3), 0 <

s < 1. To make the notation simpler the extention of function ¢ will still be denoted ¢.

Lemma 2.4 : For any ¢ € H*(Q), 0 < s < 1, we have

¢ — My (D)l[2(0) < Ce%(|9lls,0 |[¢ — Qe(P)l|r2() < C°|[d]]s,0
9l ga, e < el 16l < C=lllsa
¢ — &(. +e€i)llr2q) < C°[@lls,0, i€ {l,...,n}
[[Q(D)l| 22 (a02) < Ce*D2|g||s.0

(2.11)

The constants depend on n, s and 0f2.

Proof : For any ¢ belonging to H*(Y), 0 < s < 1, we have the Poincaré-Wirtinger inequality

[ = My ()2 vy < Cll¢]]s,y

where My (1) is the mean of ¢ in the cell Y. The constant depends only on n. We immediately deduce

the upper bound ||¢ — ME(¢) ) < Ce®||¢|]s.o. We apply the Poincaré-Wirtinger inequality to the

| |L2(55,4 @
restriction of ¢ to two neighbouring cells included in Q. 4 and we obtain the estimate of the gradient of Q. (¢)
in Qes (IVQe(@)ll 1o, e < O Idllsie) and then the upper bound [|¢ — Qe()l] o g ) < Ce°ll9ls.0

3)
thanks to the estimate of ||¢ — M (o) . The function Q.(¢) belongs to H'(Q. 3), hence considering

- | |£2 (55’3)
a neighbourhood of d€). 3 (included in . 3) of thickness ! =% we show that

1Q:)ll o,y S CelBllse = Nlélla, ) < Celgllssn-

3) — 3) —

We have
[0 — (. +c€i)llr2) < | — Qe(D)||r2(0) + [|1Q:(d) — Qe(@)(. + €€)l|L2 ()

+lo(- +€€i) — Qe(@) (- + eéi)ll2 () < Ce°[|¢lls.0

7



thanks to the upper bounds of ||¢p— Q. (¢)] |L2(5 and ||V Q. (¢)] |[L2(55 Il
is the consequence of the estimates ||V Q. (¢)|| I Ce®||4||s,o and ||Q8(¢)||L2(55,3) <Cl|glls,- T

The last inequality of the lemma
Corollary : For any s €]0,1[ and for any ¢ € H*(2) we have

(2.12) {”Qa( ) = My (9)llL2() < Ce°l[@lls0

|0 — Tz (D)l 2 oxy) < C%|9]]s,0

The constants depend on n, s and 0f2.

Proof : The inequalities (2.12) are the consequences of (2.11). r

Theorem 2.5 : Let ¢ be in HY(Q). There exists ’L//J\g belonging to HY,,.(Y; L?()) such that for any s €]0,1]

per

9l vz < {1822y + el Vol zzcn }
(2.13) I172(6) = Vel g (v ey < Ce{NIellL2() + €IVl 2oy }
+ O 6l + 10520, )

The constants depend only on n, s and OS).
Proof: With a few modifications we prove Theorem 2.5 as Theorem 2.2. Thanks to Lemma 2.4 we replace

the inequalities (2.4) of step one in Theorem 2.2 by

||\II||L2( q) = 055/2”\1'”5 Q

YU € H¥(Q), { '
||\I/( —561) \I]”LZ(Q) SCE ||\I]||S,Q, 26{1,...,71}.

Theorem 2.6 : For any ¢ € H'(Q), there exists qbg € H;QT(Y; L?(2)) such that
lpellm (virz)) < ClIVEllL2@)m,

||7;(vm¢ -V ¢ Vy¢6|| L2(Y;(H*(Q))’ n < Ce° ||v¢||[L2 Q)™ + CES/2||V¢|| L2(§€’3)]n'

The constants depend only on n, s and OS).

Proof : With a few modifications we prove Theorem 2.6 as Theorem 2.3. Proceeding as Theorem 3.4 in
[5] and thanks to Lemma 2.4, we show that

IT:(V®) = Vol |agysrs ey e < C° IVl + Ce1901 ug,

where ¢ = ® + ¢, & = Q.(¢). Now let ¥ be in H*(2). We have

o) 8
¢¢ o

00 | [0 00.(u
K Zw-0w)+ [ Fow = [ Zw-0w)+ [ o) - [ o7

ox;
o0 i
< ||VQ||[L2(Q)]n||1/f* Qs(i/f)HLZ(Q)+||Q||L2(aQ)I|Qs( Me200) + 191lL2 @)1 Q= (W)L (@)

hence ||5V¢|| [(Hs @) ]» = Ce’|| Vol Lz +055/2||V¢|| (L2(Qe.5)]"
2.3) and the inequalities of Lemma 2.4. L

thanks to the estimates of ¢ (see Theorem



3. Error estimate in the classical homogenization problem

We consider the following homogenization problem :
¢° € H%O (Q),

(3.1) /QA({;})V(bE.Vu:/qu,

Yu € Hllo (Q),

where

e () is a bounded domain in R™ with lipschitzian boundary,

e I'y is a measurable set of 99 with measure nonnull or Ty = (),

o H} (Q) = {¢ € H'(Q)| 6 = 0 on Lo},

o fe L),

e A is a square matrix of elements belonging to L (Y), verifying the condition of uniform ellipticity
clé)? < A(y)E.£ < Cl€]? ae. y € Y, with ¢ and C strictly positive constants.

If T'g = (), we suppose that | f= [ ¢°=0
Q Q

We have shown, see [2], that V¢ — VP — U, (Vy@ strongly converges towards 0 in [L?(2)]", where Uz

is the averaging operator defined by

VerXQxY) U(V)@) = /

V(g[f] tez, {g})dz U(V) € LA(9),

€

and where
(®,0) € HE (Q) x L*(Q, H},,(Y)/R)

per

is the solution of the limit problem of unfolding homogenization

V(U, 1) € HE () x L*(Q; H)., (Y)/R)

per

ALA{Vm¢+vy$}.{sz+vya}:/QfU_

(3.2)

IfFoz(Z),wetake/@:().

Q
We recall that the correctors x;, ¢ € {1,...,n}, are the solutions of the following variational problems :

Xi € Hpe (), /Y xi =0, /Y AW)Vy(xi(w) +vi) Vy(y)dy =0, Vi € Hp,, (Y)

They allow us to express q? in terms of V@

and to give the homogenized problem verified by ¢

(3.3) AVOVU = | fU VU € Hp (9)
Q Q



where (see [3])

_ yz + Xi a(yj + Xj)
A = |Y| Z / oy

3.1 First case : smooth boundary and homogeneous Dirichlet or Neumann limits conditions

In this paragraph we suppose that
o Q is a bounded domain in R™ with C*' boundary,

o I'g = 90 (homogeneous Dirichlet condition) or Ty = 0 (homogeneous Neumann condition,).

In Theorems 4.1 and 4.2 in [5] we gave the following error estimate for the solution of problem (3.1) :

(3.4) [[¢° — @||L2(q) + VP = VO — ZQa( )sz({ ez < Ce ([ fll2 (),

the constant depends on n, A and 9f). In Theorem 3.2 we are going to complete these estimates.

Lemma 3.1 : We have

(3.5) IVO Il 2@,y < CVENfllL2 (@)

The constant depends on n, A and 0f).

Proof : The boundary of Q being of class C1'! we deduce that the solution ® of the homogenized problem
(3.3.i) belongs to H?*(2) and verifies ||®||2(q) < C||f||r2(0). The estimate of Lemma 3.1 is a consequence
of (2.1), and of (3.4) and of the following inequality :

- 0P :
Ve =3~ 0 (5 ) Vs (Dlgaa, e IVl e + CUVQD o, o IVaxil 220y
i=1 t

SC”V@H[LZ(Q\EA)]” < C\/E||q)||H2(Q) < C\/E”f”LZ(Q)

We denote by p(z) = dist(x,dQ) the distance between z € 2 and the boundary of Q.

Theorem 3.2 : The solution ¢° of problem (3.1) verifies the following estimates :
(3.6) 6% — @|[L2() < Cellfllr2().

(3.7) [o(ver —ve - ZQE( ) V(= ))H[LQ(Q)]H<CE||JC||L2(Q

The constants depend on n, A and 0f).
: _ingfP0)
Proof : We put p.(.) = inf . 1.

Step one. Let U € H} (Q) N H?*(2). In problem (3.1) we take the test function U, then by unfolding we
transform the equality we have obtained. Thanks to (2.2), (3.4) and thanks to the corollary of Proposition
3.1 of [5], we have

‘/QA({g})quE.VU—/QxyAﬁ(VqSE)VU‘ < ‘/QA({;})V&.VU—/

Qxyﬁ(A({é})ngs.VU)‘

+| [ AT v - vul

< C{\/5||V¢E||[L2(§Eyl)]n + 5||V¢E||[L2(Q)]"}||VU||[H1(Q)]"
< Cel|fllL2@ IVU iz (o)
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We apply now Theorem 2.3 to the function ¢. There exists ¢° € HL_(Y;L2(Q)) such that

per

(3.8) [[7:(V29®) = Voo — Vy¢s||[L2(y;(H1(Q))’)]n < Cef[l2 o)
since from Lemma 3.1 we have ||V¢©|| (L2, 5 < CVe||fllr2(q)- From the above estimates and from (3.1)
we obtain
(3.9) [ 10 [ A6 + 9,8V < Cell oo I VUl o
XY

Now let X; € H},,.(Y), i € {1,...,n}, be the solution of the variationnal problem
(3.10) /Y AV 0V, (X +3) =0 VO € HL (V)

If matrix A is symetric X; = xi, Xi are the correctors.

In problem (3.1) let us take the test function u.(z) = ep.(x Z QE (E) We have multiplied by
1‘ e

pe so that the test function u. belongs to H}(2). We 1mmed1ately Verlfy the inequalities (7 € {1,...,n})

| [ Az 9oy - \ | fue] < Cellllza 19Uz
[ AN VEVr 0GR (2)| < CVEIT Sl VUl

[ ealt: }wvgg e % (2)] < CellV6 a9V o

[ 0= p) AN QUGIViR()] < OVEITH o, IV Ul

From these estimates, from (3.5) and the corollary of Proposition 3.1 in [5] we obtain

[ {}WEZQa ViXi(2)] < Cell Al @IVl oy

— [ AT A GHTE)]| < Calllnl Ul

By unfolding we transform the left handside integral of the above second inequality. From (2.2) and (3.5)

we have
[ Atve DGR - [ m (e S sGhv )]
Qxy
SC\/EHVQaEH[Lz@E,I)]TJ|VU||[H1(Q)]n < Cellfllz2 @ VUi @

We reintroduce the partial derivatives of U. As a result we have

LN U
| /Q YA7;<vm¢>Za—vyxz < Ce[|f 112 VU gz e
X

=1
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We replace T:(V.¢°) by V.o + Vy(,bg thanks to (3.8), which gives us

[, AT 49,5 ¥ (Za—xz)

< Cel|fllL2@ IVUl1m ()

" O¢F “~ U
From the definition of the correctors y; we obtain /QXY A(qub‘E + Z_Zl %Vyxi) Vy (; a—z]xj) =0, we

substract it from the left handside of the above inequality and thanks to (3.10) we deduce

- )
[ av,@ - (,f’ x0) VU] < Cellfll e I VUl e
QxY
and then from (3.9) we obtain
(3.11) ’/ AV — V(I))VU’ < Cel|fll 2@l |VU gy YU € HE () 0 H2()
Q

where A is the matrix of the homogenized problem.

Let U. € H} (Q) be the solution of the variationnal problem

(3.12) /Q.AVUVUE = /Q(qﬁ8 — P Yo € HE, ()

The boundary of € is of class C'' and we have the homogeneous Dirichlet or homogeneous Neumann limits

conditions. As a result we have U, belonging to H%O (2) N H?(Q). Moreover it verifies the estimate

|Uellm2(0) < Cl|¢° — @[|L2(q)

In (3.12) we take v = ¢° — ® to obtain the estimate of the L? norm of ¢¢ — @ thanks to (3.11).
Step two. Now we prove the estimate (3.7) of the theorem.

Let U be in Hy, (©2). From Theorem 3.4 in [5] there exists u° € H,,,.(Y; L*(€2)) such that

(313) ||7;(VU) - VU — Vyas”[L?(Y;H*l(Q))]" < C€||VU||[L2(Q)]TL

In problem (3.1) we take the test function pU and in problem (3.2) the couple of test functions (pU, pu®).
We obtain

Jyror = [auznovesu s [uadzhvess

— 0P .
(3.14) /prU=/QXYAp(vmd>+za—mvyxi)(vw+vyu)

+/QXY (v <I>+Za yxz)

The solution ® of homogenized problem (3.3.7) belongs to H?(2) and verifies ||®|| g2(q) < C||f||L2()- Hence
the function pV® belongs to [Hg(2)]". From (3.13) we have

< CellfllL2@ VUl iL2@m

‘/ Ap(V, <1>+Z aq) Vyxi) (Te(VoU) = V,U - V,a.)
QxYy

=1
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Now we introduce the discrete functions Me(V®), Mg (—) ME(U), M (p), My (Vp) to replace VO, gf ,

U, p, Vp thanks to the estimate of Proposition 3.1 of [5]). We use (2.2) to transform the integrals over
Q x Y in integrals over 2 by inverse unfolding. Then we replace the discrete functions by V&, QE(%), U,

p, Vp and to conclude we add the partial derivatives missing in the gradient of ® +e> " | O. (%)xi(g)
(for more details see the proof of Proposition 4.3 in [5]). We obtain

]/fpu / (o (meng(g—i)xi(;))w
- [vagz) ((I)JrsZQe( () V6] < Cellfllzao 1Vl o)
The first equality of (3.14) and the above inequality give us
‘/QA({g})pV(be* *5295(5%) (2))vu
+ [vA(pv (s -0 —szgs(“’)xz (£)) V0| < CellF Lz 101 e

- 0P :
Now we choose U = p(qb‘E —P—c Z Q. (8_) Xi (—)) From the coercivity of matrix A there follows that
- XL 9

||Pv(¢8 e Ei QE(%)Xi(;))”%LQ(Q)]n
i=1 v
= 0P : " oD .
< Cllpv(qba —d-e) Qa(%)xz'(g))||[L2<sz>]n||¢8 —d-e) Qa(g)m(g)llwm
i=1 ! i=1 g
+Cell e {110V (¢ - @ —sz Q- (22 ()l + 116" @ < 30 @ (22 ) a2 oo
i=1 v

Thanks to (3.6) we obtain an upper bound of |[pV(¢* —® —e >, Qf(azl) i(2)[liz2(9))»- The functions
Qg(g—z), i €{1,...,n}, are bounded in H'(Q), the estimate (3.7) immediately follows. r

Corollary : Let Q an open set strongly included in €2, we have

0P
16 =@ =30 @ (22Y a2y < el

i=1

The constant depends on n, A, Q' and 99. r
3.2 Second case : Lipschitz boundary

In Theorem 4.5 of [5], 'y is a union of connected components of 9§ and we have shown that there exists v in
the interval ]0,1/3] depending on A, n and 02 such that the solution of problem (3.1) verifies the following

error estimate :

R - oo
(3.15) 0% — ®||L2(0) + ||V = VI — ZQE( )Vsz( Mz < Celfllrz2e

=1

The constant depends on n, A and 0f).
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In the sequel of this paragraph we suppose that
e the open set Q is a bounded domain in R? of polygonal (n = 2) or polyhedral (n = 3) boundary,
e () is on one side only of its boundary,
o 'y is the union of some edges (n = 2) or some faces (n = 3) of 012,

o if 'y # ON) the homogenized matriz A is symetric.

We know (see [6]) that for any g € L?(Q) the solution of the variationnal problem
(3.16) U € Ht, (Q), / VUV¢ = / g9 Vo€ HL ()
Q Q

belongs to H!T#(Q) for an s belonging to |1/2,1[ (s = 1 if the domain is convex) depending only on 9§ and

on the chosen limits conditions and verifies the estimate
[IVU[ls,2 < Cllgllz2(e)

Under a non singular linear transformation the variationnal problem (3.3) becomes (3.16). It is posed in a
domain which is of the same kind as €. Hence, the solution ® of the homogenized problem (3.3) belongs to
H'T(Q) for an s belonging to |1/2,1[ (s = 1 if the domain is convex) depending only on 99, on A and on

the chosen limits conditions and verifies the estimate
IVe|ls.0 < C[lf[lz2(0)

Theorem 3.3 : The solution ¢° of problem (3.1) verifies

HV(bE Ve - ZQa( ) Vyxi(= )H < Ce*?||fll2@),

[L2()]
(3.17)

ll¢° *‘I)||L2(Q)+H (V¢8 Vo — ZQE( )Vyxz ) < Ce%(|fllL2(q)-

[

The constants depend on n, A and Of).

Proof :
Step one As in Proposition 4.3 of [5], we show that if (@,QAS) is the solution of problem (3.2), then

P+ Zsps Qs( )Xz( ) is an approximate solution of problem (3.1). The function ® is the solution of

the homogenlzed problem (3.3).
Let U € Hf (©). Thanks to Theorem 2.6, there exists V° € HY (Y;L%(Q)) verifying the estimates

per

(2.15). We take (\II,JE) as test-function in the unfolded problem (3.2). Since V& belongs to [H*(2)]” and
||V@||57Q S C||f||L2(Q), we obtain

1 " 09
| /Q 0=t | AW (Ta(@) + 3 G @ Vi) T (Vo) < C 2 Sl [l

o0x;
i=1 v

0P 0P
We replace Ere by Qs( ) and then, the following part of the proof is exactly the same as the proof of
o,
Proposition 4.3 in [5] because, thanks to Lemma 2.4 we have
[[V® — Q. (V)2 () < Ce°|[fllL2()s
(3.18) 19:(V®)ll o, 1y < O fllzaeys
1Q=(V®)ll 12y < C||f||L2(Q 1Q=(VO)llzr: ey < C*HIf M 2(0n-
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Hence we obtain the first inequality of (3.17).
Step two. We now use the first inequality of (3.17) and again the estimates of Lemma 2.4 and as in

Lemma, 3.1 we prove the following upper bound of the L? norm of gradient ¢° in the neighbourhood of © :

(3.19) V6"l 2@, oy < CE2 12

The constant depends on n, A and 0f).
Step three. Let U be in Hf () N H'™5(€2). In problem (3.1) we take the test function U, then by
unfolding we transform the equality we have obtained. Thanks to (2.2), (3.19) and thanks to the corollary

of Lemma 2.4, we have

‘/QA({;})V&.VU—/QxyAT(VdoE vu| < ‘/ ({£})ves.vU - /

QxY

T(A({£}) Ve vU))|
+| [ ATy T - vuy]

< C{ES/2||V¢E||[L2(§E,l)]n =+ €S||v¢€||[L2(Q)]"}”VUH&Q
< C°||fllez [IVUl]s,0

We now apply Theorem 2.6 to the function ¢°. There exists d)E cH!

per

(Y; L?(Q)) such that
(3.20) IT(V26%) = Vad = Vyoellpe vy < CENI 2@
We go on as in step 1 of Theorem 3.2 to obtain
(3.21) ‘/QA(WE - V(I))VU‘ < O flle@||VUllen YU € H (Q) 0 H™*(Q)
Let U, be the solution of the variationnal problem
(3.22) U. € Hf, (), /QAVvVUE = /Q(ng —®)v  Vve Hp ().
The function U. belongs to Hp () N H'*5(£2). Moreover we have
[[VUc|]s,0 < Cl|¢° = @[>
We take v = ¢° — @ in (3.22) and thanks to (3.21) we obtain the estimate of the L? norm of ¢* — ®
Step four. We now prove the upper bound of p(V(ba - Vo — é Q. (g—i)vyxz(g))

We take a test function in U € Hf (€2) and as in step 2 of Theorem 2.5 we decompose the unfolded of its
gradient thanks to Theorem 3.4 of [5]. In (3.1) we take pU as test function and in (3.2) we take (pU, pu®) as
couple of test functions. We obtain both equalities (3.14). In the first line of the second equality of (3.14)
we replace V& and a<1> - by Q:(V®) and QE( ) Thanks to (3.18) we have

‘/prU—/X Ap(Qg V. ®) +ZQ€ q)l yxz)(vxy+vyaa)
+/QXY UA(VI¢+;a_%vai)vmp

15
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From the belonging of pQ.(V®) to [H}(Q)]", and from (3.18) and from (3.13) we deduce

\/M Ap(Qu(V.®) + znj Q. (5 )9) (TV.0) — VU - 9,2

i=1

< Ce¥|fllL2 @I VU2 @y

We go on as in step 2 of Theorem 3.2. To conclude we use the upper bound of the L? norm of the function

¢° — ® we obtained above. L

Corollary : Let Q be an open set strongly included in €2, we have
. 0P . 3
67 =@ =& > Qo7 )i ()l ey < C*lIflleaery
i=1 ¢

The constant depends on n, A, Q and 9. L

Remark : If ) is a convex domain we obtain the same estimates as in Theorem 3.2. L
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