344 research outputs found

    Strain Hardening in Polymer Glasses: Limitations of Network Models

    Full text link
    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While traditional entropic network models can be fit to the total stress, their underlying assumptions are inconsistent with simulation results. There is a substantial energetic contribution to the stress that rises rapidly as segments between entanglements are pulled taut. The thermal component of stress is less sensitive to entanglements, mostly irreversible, and directly related to the rate of local plastic arrangements. Entangled and unentangled chains show the same strain hardening when plotted against the microscopic chain orientation rather than the macroscopic strain.Comment: 4 pages, 3 figure

    Analysis of complex singularities in high-Reynolds-number Navier-Stokes solutions

    Full text link
    Numerical solutions of the laminar Prandtl boundary-layer and Navier-Stokes equations are considered for the case of the two-dimensional uniform flow past an impulsively-started circular cylinder. We show how Prandtl's solution develops a finite time separation singularity. On the other hand Navier-Stokes solution is characterized by the presence of two kinds of viscous-inviscid interactions that can be detected by the analysis of the enstrophy and of the pressure gradient on the wall. Moreover we apply the complex singularity tracking method to Prandtl and Navier-Stokes solutions and analyze the previous interactions from a different perspective

    Strain Hardening of Polymer Glasses: Entanglements, Energetics, and Plasticity

    Full text link
    Simulations are used to examine the microscopic origins of strain hardening in polymer glasses. While stress-strain curves for a wide range of temperature can be fit to the functional form predicted by entropic network models, many other results are fundamentally inconsistent with the physical picture underlying these models. Stresses are too large to be entropic and have the wrong trend with temperature. The most dramatic hardening at large strains reflects increases in energy as chains are pulled taut between entanglements rather than a change in entropy. A weak entropic stress is only observed in shape recovery of deformed samples when heated above the glass transition. While short chains do not form an entangled network, they exhibit partial shape recovery, orientation, and strain hardening. Stresses for all chain lengths collapse when plotted against a microscopic measure of chain stretching rather than the macroscopic stretch. The thermal contribution to the stress is directly proportional to the rate of plasticity as measured by breaking and reforming of interchain bonds. These observations suggest that the correct microscopic theory of strain hardening should be based on glassy state physics rather than rubber elasticity.Comment: 15 pages, 12 figures: significant revision

    TEMPORAL VARIABILITY OF LONGITUDINAL SEDIMENT TRANSPORT ON THE BRAZILIAN CONTINENTAL SHELF

    Get PDF
    The sediment transported along the coast can alter the existing balance in certain environments, causing or accelerating erosive processes, and resulting in economic and environmental damages. In this way, predicting changes in the coastal zone and understanding the beach processes is an essential source of information for the elaboration of coastal management plans. In this context, the present work aims to estimate the alongshore sediment transport (LST) in several sectors of the Brazilian Coast, identifying the annual average and the predominant transport. This study was conducted for the period between the years 1979 and 2015, using computational modeling to investigate the behavior of the waves, and empirical formulas to calculate the LST rates. In addition, the temporal variability was investigated through the wavelet analysis. The results showed a great diversity in the wave climate behavior along the Brazilian Coast, presenting a good correlation in terms of magnitude between the estimation of LST and past studies in the different sectors analyzed. The place where transport has become pronounced understands the sector between Alagoas and Rio Grande do Norte states, while the opposite was observed in the Southern part of Bahia. The wavelet analysis showed that the spectrum of LST time series has a significant amount of energy for processes with a seasonal and annual variability, indicating that the northern regions of Brazil are most affected by the interannual processes. In this sense, informations along the Brazilian coast are presented, that may be considered in future projects, involving the sustainable management of the coastal zones

    An alternating descent method for the optimal control of the inviscid Burgers equation in the presence of shocks.

    Get PDF
    We introduce a new optimization strategy to compute numerical approximations of minimizers for optimal control problems governed by scalar conservation laws in the presence of shocks. We focus on the 1 − d inviscid Burgers equation. We first prove the existence of minimizers and, by a -convergence argument, the convergence of discrete minima obtained by means of numerical approximation schemes satisfying the so called onesided Lipschitz condition (OSLC). Then we address the problem of developing efficient descent algorithms. We first consider and compare the existing two possible approaches: the so-called discrete approach, based on a direct computation of gradients in the discrete problem and the so-called continuous one, where the discrete descent direction is obtained as a discrete copy of the continuous one. When optimal solutions have shock discontinuities, both approaches produce highly oscillating minimizing sequences and the effective descent rate is very weak. As a solution we propose a new method, that we shall call alternating descent method, that uses the recent developments of generalized tangent vectors and the linearization around discontinuous solutions. This method distinguishes and alternates the descent directions that move the shock and those that perturb the profile of the solution away of it producing very efficient and fast descent algorithms

    Spin injection and spin accumulation in all-metal mesoscopic spin valves

    Get PDF
    We study the electrical injection and detection of spin accumulation in lateral ferromagnetic metal-nonmagnetic metal-ferromagnetic metal (F/N/F) spin valve devices with transparent interfaces. Different ferromagnetic metals, permalloy (Py), cobalt (Co) and nickel (Ni), are used as electrical spin injectors and detectors. For the nonmagnetic metal both aluminium (Al) and copper (Cu) are used. Our multi-terminal geometry allows us to experimentally separate the spin valve effect from other magneto resistance signals such as the anomalous magneto resistance (AMR) and Hall effects. We find that the AMR contribution of the ferromagnetic contacts can dominate the amplitude of the spin valve effect, making it impossible to observe the spin valve effect in a 'conventional' measurement geometry. In a 'non local' spin valve measurement we are able to completely isolate the spin valve signal and observe clear spin accumulation signals at T=4.2 K as well as at room temperature (RT). For aluminum we obtain spin relaxation lengths (lambda_{sf}) of 1.2 mu m and 600 nm at T=4.2 K and RT respectively, whereas for copper we obtain 1.0 mu m and 350 nm. The spin relaxation times tau_{sf} in Al and Cu are compared with theory and results obtained from giant magneto resistance (GMR), conduction electron spin resonance (CESR), anti-weak localization and superconducting tunneling experiments. The spin valve signals generated by the Py electrodes (alpha_F lambda_F=0.5 [1.2] nm at RT [T=4.2 K]) are larger than the Co electrodes (alpha_F lambda_F=0.3 [0.7] nm at RT [T=4.2 K]), whereas for Ni (alpha_F lambda_F<0.3 nm at RT and T=4.2 K) no spin signal is observed. These values are compared to the results obtained from GMR experiments.Comment: 16 pages, 12 figures, submitted to PR

    Intertwining relations for one-dimensional diffusions and application to functional inequalities

    Get PDF
    International audienceFollowing the recent work [13] fulfilled in the discrete case, we pro- vide in this paper new intertwining relations for semigroups of one-dimensional diffusions. Various applications of these results are investigated, among them the famous variational formula of the spectral gap derived by Chen and Wang [15] together with a new criterion ensuring that the logarithmic Sobolev inequality holds. We complete this work by revisiting some classical examples, for which new estimates on the optimal constants are derived

    On metric-connection compatibility and the signature change of space-time

    Get PDF
    We discuss and investigate the problem of existence of metric-compatible linear connections for a given space-time metric which is, generally, assumed to be semi-pseudo-Riemannian. We prove that under sufficiently general conditions such connections exist iff the rank and signature of the metric are constant. On this base we analyze possible changes of the space-time signature.Comment: 18 standard LaTeX 2e pages. The packages AMS-LaTeX and amsfonts are require

    ECFA Detector R&D Panel, Review Report

    Full text link
    Two special calorimeters are foreseen for the instrumentation of the very forward region of an ILC or CLIC detector; a luminometer (LumiCal) designed to measure the rate of low angle Bhabha scattering events with a precision better than 103^{-3} at the ILC and 102^{-2} at CLIC, and a low polar-angle calorimeter (BeamCal). The latter will be hit by a large amount of beamstrahlung remnants. The intensity and the spatial shape of these depositions will provide a fast luminosity estimate, as well as determination of beam parameters. The sensors of this calorimeter must be radiation-hard. Both devices will improve the e.m. hermeticity of the detector in the search for new particles. Finely segmented and very compact electromagnetic calorimeters will match these requirements. Due to the high occupancy, fast front-end electronics will be needed. Monte Carlo studies were performed to investigate the impact of beam-beam interactions and physics background processes on the luminosity measurement, and of beamstrahlung on the performance of BeamCal, as well as to optimise the design of both calorimeters. Dedicated sensors, front-end and ADC ASICs have been designed for the ILC and prototypes are available. Prototypes of sensor planes fully assembled with readout electronics have been studied in electron beams.Comment: 61 pages, 51 figure

    Observation of narrow baryon resonance decaying into pKs0pK^0_s in pA-interactions at 70GeV/c70 GeV/c with SVD-2 setup

    Full text link
    SVD-2 experiment data have been analyzed to search for an exotic baryon state, the Θ+\Theta^+-baryon, in a pKs0pK^0_s decay mode at 70GeV/c70 GeV/c on IHEP accelerator. The reaction pApKs0+XpA \to pK^0_s+X with a limited multiplicity was used in the analysis. The pKs0pK^0_s invariant mass spectrum shows a resonant structure with M=1526±3(stat.)±3(syst.)MeV/c2M=1526\pm3(stat.)\pm 3(syst.) MeV/c^2 and Γ<24MeV/c2\Gamma < 24 MeV/c^2. The statistical significance of this peak was estimated to be of 5.6σ5.6 \sigma. The mass and width of the resonance is compatible with the recently reported Θ+\Theta^+- baryon with positive strangeness which was predicted as an exotic pentaquark (uuddsˉuudd\bar{s}) baryon state. The total cross section for Θ+\Theta^+ production in pN-interactions for XF0X_F\ge 0 was estimated to be (30÷120)μb(30\div120) \mu b and no essential deviation from A-dependence for inelastic events (A0.7)(\sim A^{0.7}) was found.Comment: 8 pages, 7 figures, To be submitted to Yadernaya Fizika. v3-v5 - Some references added, minor typos correcte
    corecore