8 research outputs found

    Regular and irregular patterns of self-localized excitation in arrays of coupled phase oscillators

    Get PDF
    We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop, connecting the phase lag to the order parameter, we can observe chimera states also for systems with a small number of oscillators. Numerical simulations show a huge variety of regular and irregular patterns composed of localized phase slipping events of single oscillators. Using methods of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic chimera states as a result of transitions to chaos via period doubling cascades, torus breakup, and intermittency. We can explain the observed phenomena by a mechanism of self-modulated excitability in a discrete excitable medium.Comment: postprint, as accepted in Chaos, 10 pages, 7 figure

    Bumps, chimera states, and Turing patterns in systems of coupled active rotators

    Get PDF
    Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units similar patterns, where coherent units are at rest, are called bump states. Here, we study bumps in an array of active rotators coupled by non-local attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: single incoherent units appear in a homoclinic bifurcation with a subsequent transition via quasiperiodic and chaotic behavior, eventually transforming into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition

    Hopf Bifurcations of Twisted States in Phase Oscillators Rings with Nonpairwise Higher-Order Interactions

    Full text link
    Synchronization is an essential collective phenomenon in networks of interacting oscillators. Twisted states are rotating wave solutions in ring networks where the oscillator phases wrap around the circle in a linear fashion. Here, we analyze Hopf bifurcations of twisted states in ring networks of phase oscillators with nonpairwise higher-order interactions. Hopf bifurcations give rise to quasiperiodic solutions that move along the oscillator ring at nontrivial speed. Because of the higher-order interactions, these emerging solutions may be stable. Using the Ott--Antonsen approach, we continue the emergent solution branches which approach anti-phase type solutions (where oscillators form two clusters whose phase is π\pi apart) as well as twisted states with a different winding number.Comment: 24 pages, 8 figure

    A Tweezer for Chimeras in Small Networks

    Get PDF
    We propose a control scheme which can stabilize and fix the position of chimera states in small networks. Chimeras consist of coexisting domains of spatially coherent and incoherent dynamics in systems of nonlocally coupled identical oscillators. Chimera states are generally difficult to observe in small networks due to their short lifetime and erratic drifting of the spatial position of the incoherent domain. The control scheme, like a tweezer, might be useful in experiments, where usually only small networks can be realized

    Bumps, chimera states, and Turing patterns in systems of coupled active rotators

    Get PDF
    Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest, are called bump states. Here, we study bumps in an array of active rotators coupled by non-local attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition

    Optimal design of tweezer control for chimera states

    No full text
    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators
    corecore