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We study a system of phase oscillators with nonlocal coupling in a ring that supports self-organized
patterns of coherence and incoherence, called chimera states. Introducing a global feedback loop,
connecting the phase lag to the order parameter, we can observe chimera states also for systems
with a small number of oscillators. Numerical simulations show a huge variety of regular and
irregular patterns composed of localized phase slipping events of single oscillators. Using methods
of classical finite dimensional chaos and bifurcation theory, we can identify the emergence of chaotic
chimera states as a result of transitions to chaos via period doubling cascades, torus breakup,
and intermittency. We can explain the observed phenomena by a mechanism of self-modulated
excitability in a discrete excitable medium.
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Chimera states are self-organized patterns of coherence and incoherence that appear spontaneously
in spatially extended systems of identical oscillators with homogeneous coupling. After their discov-
ery by Kuramoto and Battogtokh [1] they have been investigated mainly in the context of statistical
mechanics using the continuum limit with the number of oscillators tending to infinity, where they
can be described as non-homogeneous equilibrium profiles of macroscopic (averaged) quantities. How-
ever, as soon as the numbers of oscillators becomes too small the classical chimera states in the
Kuramoto-Sakaguchi oscillators with nonlocal coupling become unstable and collapse toward a com-
pletely coherent state. This has been explained by characterizing them as chaotic transients with a
lifetime that increases exponentially with the system size [2].

As discovered in [3], slightly modifying the coupling scheme with a global feedback on the phase-lag
parameter drastically enhances the stability of chimera states without otherwise significantly changing
them. For an appropriate choice of the feedback parameters they appear to be the only attractor in
this system and can be found as stable objects close to the completely coherent state. Moreover, they
can be traced down to very small system size. This offers the opportunity to study the resulting dy-
namical regimes by the methods of classical finite dimensional chaos and bifurcation theory. Pursuing
this approach, we show that chimera states, which have been described in large systems as a single,
statistically stationary regime, in small systems transform into a huge variety of regular or irregular
self-localized patterns. The variety of different patterns is organized in a complex bifurcation scenario
including transitions between regular dynamics and chaos by period-doubling cascades, torus breakup,
and intermittency.

I. INTRODUCTION

The self-organized formation of patterns in homogeneous media is a fundamental paradigm in nonlinear science.
Recently, a lot of interest has been attracted by self-organized coherence-incoherence patterns in spatially extended
oscillator systems, called chimera states [4, 5]. After their first description by Kuramoto and Battogtokh in a system of
coupled phase oscillators, similar dynamical regimes have been reported for a variety of theoretical and experimental
settings, including e.g. chemical, electronic and mechanical oscillators [6–13] as well as models of neuronal systems [14–
17]. In all of these studies, a basic requirement for the observation of chimera states was a sufficiently large number
of oscillators of typically at least N ≈ 40. This imposes a substantial restriction on experimental realizations, see [6],
and leads to the fact that up to now, with a few exceptions [12, 18, 19], the main tool for theoretical investigations
of chimera states has been the continuum limit with the number of oscillators tending to infinity. In this paper, we
will study a slightly modified system, which has been recently presented in [3], where an additional global feedback
stabilizes the chimera states in a way such that they can be observed for a smaller number of oscillators.

As in the classical chimera system, we start with N identical Kuramoto-Sakaguchi phase oscillators of the form

dθk
dt

= ω − 2π

N

N∑
j=1

Gkj sin(θk − θj + α), k = 1, . . . , N, (1)

with phases θk ∈ [0, 2π) and a coupling matrix G ∈ RN×N . The natural frequencies of the oscillators are all chosen
identical, such that without loss of generality we can assume ω = 0. We consider a one-dimensional array of oscillators,
where each oscillator is located at the position xk = 2kπ/N −π in the interval [−π, π] and which is closed by periodic
boundary conditions. Then, the coupling constants Gkj can be expressed by a coupling function G(x), depending on
the distances x = xk − xj such that the coupling is smaller between more distant oscillators. In this paper we choose
a sinusoidal function,

Gkj = G(xk − xj) =
1

2π
[1 +A cos(xk − xj)], (2)

as it has been suggested in [4]. In order to find a classical chimera state in this system, the phase-lag parameter α in
the phase response function, governing the attraction and repulsion between the oscillators, has to be well tuned to
values slightly below π/2. However, following [3], we choose the phase lag α not as a constant parameter. Instead,
we introduce a global feedback loop

α(t) =
π

2
−K(1− r(t)), (3)
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between phase lag α and the global order parameter

r(t) =

∣∣∣∣∣∣ 1

N

N∑
j=1

eiθj(t)

∣∣∣∣∣∣ . (4)

In [3] it has been described in detail how this type of global feedback can be interpreted as a proportional control
that stabilizes the chimera states. For systems with a large number of oscillators it is non-invasive on average, i.e.
the branch of equilibrium solutions of the continuum limit remains unchanged, while only its stability properties
change. In particular, it has been shown that for suitably chosen control parameters the completely coherent state
loses its stability and for large N the chimera state is the only attractor of the system. The loss of stability of
the completely coherent state rules out the main instability mechanism for chimera states with small N . Indeed,
as shown in [2] chimera states in the classical Kuramoto-Battogtokh system with nonlocal coupling show sudden
collapses to the completely coherent state and can be characterized as chaotic transients with a lifetime that increases
exponentially with the system size. Due to this effect, it is impossible to observe stable chimera states for small N
in the Kuramoto-Battogtokh system without the feedback term. The main purpose of the present paper is to give
a detailed description of the dynamical phenomena in the feedback system with a small number of oscillators, using
methods of classical finite dimensional chaos and bifurcation theory. We first present a detailed numerical study of
the dynamics displaying a huge variety of regular and irregular stationary and propagating patterns. Then, we give
an explanation of the observed phenomena in this system, describing it as a discrete medium at the threshold between
stationary excitable and oscillatory behavior, where the pattern formation is caused by an interplay of activation and
inhibition due to the nonlocal coupling and the global feedback, which leads to a self-organized spatial modulation of
the excitability threshold.
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FIG. 1: (a): Space-time profile of the phase velocities θ̇k(t) for N = 10 oscillators with A = 0.9 and K = 2.8 (dark spots are
phase slips, bright regions have coherent motion). (b): The peaks of fk(t) (which is defined in (7)) indicate the times at which
the k-th oscillator is in anti-phase to the respective local mean field (k = 5 is green, k = 6 blue, and k = 7 magenta). For all
other values of k, fk(t) remains close to zero (black curve). Vertical lines indicate times at which events ts are recorded.

II. SYMMETRIES OF THE SYSTEM

System (1)–(4) possesses several symmetries. It is equivariant with respect to phase shifts, i.e. adding a constant to
a given solution θk(t), k = 1 . . . N provides again a solution of the system. In particular, this leads to the possibility
of uniformly rotating periodic solutions of the form

θk(t) = Ωt+ θ̂k mod 2π,

so called relative equilibria that turn into equilibria in a corotating coordinate frame. In addition there can appear
relative periodic solutions, i.e. quasiperiodic solutions that turn into periodic solutions in a corotating coordinate
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frame with a suitably chosen frequency Ω. Moreover, the dihedral group DN acting on the indices k = 1 . . . N
obviously maps solution to solutions. As we will see below, this opens the possibility for relative periodic solutions
with different spatio-temporal symmetries, i.e. solutions returning after a period P > 0 not to the initial state, but
to a state related to it by symmetry, i.e.

θk(t+ P ) = θσ(k)(t) + ψ mod 2π (5)

for some group elements ψ ∈ S1, σ ∈ DN .

III. NUMERICALLY CALCULATED PATTERNS AND BIFURCATION DIAGRAMS

Numerical simulations of system (1)–(4) show a huge variety of periodic and chaotic solutions, displaying different

types of stationary and traveling patterns. Fig. 1(a) shows an example of a numerically obtained time profile for θ̇k(t)
for N = 10 oscillators. Note that this solution displays clearly separated phase slipping events, which appear in the
phase velocity plots as sharp peaks separated by long intervals where the velocity is nearly constant. At the velocity
peaks, the phase θk of the corresponding oscillator is in anti-phase to its local mean field

Wk := Rke
iΘk =

2π

N

N∑
j=1

Gkje
iθj , (6)

while in the intervals in between all oscillators are nearly in phase with their local mean field. This leads to the fact
that the function

fk(t) =
1

2
(1− cos(θk(t)−Θk(t))) , (7)

which measures the distance between θk and the local mean field phase Θk, has a sharp peak as well, see Fig. 1(b).
We use this observation for the construction of a Poincaré section in the following way: We record the time moment ts
of a velocity peak, using the condition that for some oscillator ks the function fks(t)|t=ts enters into the region above
the chosen level fcr = 0.95.

In our simulations we have chosen A = 0.9 and treated K as a bifurcation parameter. Note that the feedback
term (3) provides an attractive coupling only for K > 0. In Fig. 2, we present a bifurcation diagram, taking
K ∈ [1.4, 3] where we found the bifurcations and transitions from regular to chaotic dynamics. We sampled the time
intervals ∆ts = ts − ts−1 between two consecutive velocity peaks, starting for each parameter value with a random
initial condition and discarding an interval of 20 000 time units for the transients. The diagram shows several regions
with different types of chaotic and regular solutions. The panels (a)–(h) in Fig. 2 show the time traces of the solutions
for selected values of the parameter K, indicated by dashed vertical lines in the bifurcation diagram above.

Note that both the regular and the chaotic solutions are reminiscent of the chimera states that can be observed
in such systems for large values of N . One can clearly distinguish self-organized regions of coherent oscillation from
those regions where velocity peaks are localized. For the regular solutions, these regions are either stationary, as in
(c), (e), (g), (h), or propagating at a constant speed, as in (a), (d). For the chaotic solutions (b), (f), one can also
observe regions where velocity peaks are localized, however, they show an irregular motion of their position in space.
As it has been shown in [20], there is a similar irregular motion also for classical chimera states with larger N . In
the case of [20], the motion can be described as a Brownian process with a diffusivity proportional to N−2. We study
now in more detail the different types of transitions to chaos that can be observed in this system.

A. Period doubling cascade

The bifurcation diagram in Fig. 2 shows that in the parameter interval K ∈ [2.1, 2.15] we can observe a period
doubling cascade which transforms the periodic pattern given in Fig. 2(d) into a chaotic regime. In Fig. 3 we show
an enlargement of the bifurcation diagram for this region. The observed period doubling bifurcations subsequently
change the symmetry type of the periodic solutions. The solutions on the primary branch, given in Fig. 2(d), return
to the same state after exactly four velocity peaks and an index shift by one, i.e.

∆ts+4 = ∆ts and ks+4 = ks + 1 mod N.

According to (5) we have in this case a relative periodic solutions with period P = ∆t1 + ∆t2 + ∆t3 + ∆t4 and
σ(k) = k + 1 mod N . At each period doubling the space-time symmetry is changed in a way such that both the
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FIG. 2: Bifurcation diagram: sampled time intervals between velocity peaks for varying K. Panels (a)–(h): space time plots of
the phase velocities for selected values of K (dashed vertical lines in the bifurcation diagram). Parameters: N = 10, A = 0.9.

number of velocity peaks and index shifts which are necessary to reach the same state increases by a factor of two.
In this way, the regular succession in space of the velocity peaks of the solution in Fig. 2(d)

{ks}s∈N = {3, 4, 5, 6, 4, 5, 6, 7, 5, . . . }

remains unchanged, while the sequences of inter-peak intervals ∆ts become more and more irregular.
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FIG. 3: Enlarged region from the bifurcation diagram in Fig. 2, containing a period doubling cascade of the periodic pattern
given in Fig. 2(d).

B. Torus breakup

The periodic pattern given in Fig. 2(a) loses its stability in a torus bifurcation at K ≈ 1.5452 and a stable
quasiperiodic pattern appears. Fig. 4(a) shows an enlargement of the corresponding region in the bifurcation diagram.
The two-dimensional representation in panel (b) shows the emergence of a stable invariant curve in the Poincaré
section. For further increasing parameter K there is a locking on the torus and a subsequent transition to chaos via a
torus breakup. The primary pattern corresponds to a relative periodic orbit with period two in the Poincaré section.
Again, as in the case of the period doubling bifurcation, the torus bifurcation does not change the pattern given by
the succession in space of the velocity peaks, which is in this case

{ks}s∈N = {2, 1, 3, 2, 4, 3, 5, 4, . . . }

while the sequences {∆t2s}s∈N, {∆t2s+1}s∈N of inter-peak intervals, which have been constant in the period two orbit,
start to vary periodically with an incommensurate period.
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FIG. 4: (a) Enlarged region from the bifurcation diagram in Fig. 2, containing a period torus bifurcation of the pattern Fig. 2(a).
(b) Two-dimensional representation for selected values of K (dashed vertical lines in panel (a)).
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C. Intermittency

Within the complex bifurcation scenario in Fig. 2 one can also identify a transition from regular to chaotic motion via
intermittency. Fig. 5 shows another enlargement, displaying the region around Kcrit ≈ 2.5894 where for decreasing K
the regular periodic pattern given in Fig. 2(g) loses its stability in an inverse (subcritical) period doubling bifurcation.
As we see in space-time plots in Fig. 5(a)–(c), this results in an intermittent behavior: After the destabilization
one can observe intervals of nearly periodic motion that are interrupted by irregular occurring larger excursions in
phase space. According to general theory [21, Sec. 8.2], the average time interval between these excursions scales
like (K −Kcrit)

−1. Note that during the 3000 time units displayed in panel (b) there is only a single defect in the
nearly regular pattern at t ≈ 1590 (see arrow). This corresponds to an excursion from the period two orbit that has
been destabilized at the bifurcation and is accompanied by large variations of the inter-peak-intervals. In between
the defects the trajectory stays close to the unstable period two orbit and shows nearly regular inter-peak-intervals.
More distant to the bifurcation we observe more frequent excursions from the regular motion, see panel (a).

 15

 50

 2.57  2.58  2.59

K

(a) (b) (c)

∆
t

FIG. 5: Enlarged region from the bifurcation diagram in Fig. 2, containing an intermittency transition from the pattern Fig. 2(g)
to chaos.

D. Influence of the system size

In Fig. 6 we show the results of our simulations for N = 20 oscillators. We observe a similar scenario, including
traveling and stationary regular patterns as well as various types of irregular patterns. Moreover, using the same
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FIG. 6: Bifurcation diagram and space time plots of the phase velocities for selected values of K (dashed vertical lines in the
bifurcation diagram) for N = 20 oscillators and A = 0.9.
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procedure with a randomly chosen initial condition for each parameter value as it was described above for N = 10,
we detected here some regions of coexistence of several stable regular patterns. In Fig. 6 we show the results of our
simulations for N = 20 oscillators. Remarkably, the pattern shown in panel (a) extends to parameter values around
K = 3.9 where additionally the patterns shown in panels (b) and (c) exist, see also Fig. 7 with four solution branches
in different colors. Moreover, pattern (d) extends to the region around K = 5 where also pattern (e) can be found.
This is in contrast to the case N = 10, where with the same procedure we observed only small regions of multistability
(e.g., near the transition between the regimes in Fig. 2(g) and (h) the stable regimes overlap for a range of K of 0.01).
However, for sufficiently large values of K we observe for N = 20 again the simple zigzag pattern as for N = 10 as
the only attractor. Since for increasing K in general the distance between the velocity peaks grows, it seems likely
that for increasing K a condensation to regular patterns can be expected also for larger N , however with a possibly
larger extent of multistability.
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FIG. 7: Enlarged region from the bifurcation diagram in Fig. 6, containing four solution branches indicated by different colors,
of which at least three overlap.

IV. SELF-MODULATED EXCITABILITY

Note that for increasing K one observes a decreasing number of localized velocity peaks even for larger N , coming
close to the completely coherent state. For this type of behavior the continuum limit describing chimera states by
time independent averaged quantities can be no longer considered as a valid description. Instead, we suggest here a
description of the patterns as self-localized regions of excitation in a discrete excitable medium. Indeed, the behavior
of the velocity peaks is often reminiscent to propagating excitation waves, where preceding peaks trigger subsequent
peaks in their neighborhood and where the nonlocal nature of the coupling can induce jumps and changes in their
direction of propagation in a regular or irregular manner.

To unveil the nature of system (1) as a discrete excitable medium, we rewrite it as

dθk
dt

= ω −Rk sin(θk −Θk + α), k = 1, . . . , N, (8)

using the phase Θk and the absolute value Rk of the complex local mean field defined in (6). For the completely
coherent state with θ1 = . . . = θN we get the uniform rotation θj(t) = Ωt with phase velocity Ω = ω − sinα.
Transforming equation (8) into a corotating frame ψk = θk − Ωt and inserting (3) for the feedback, we obtain

dψk
dt

= sinα−Rk sin(ψk −Ψk + α)

= cos(K(1− r))−Rk cos(ψk −Ψk −K(1− r)), k = 1, . . . , N. (9)

Here, Ψk is the phase of the local mean field in the rotating coordinates ψk. The Jacobian of (9) with respect to
(ψ1, . . . , ψN ) is zero in the completely coherent state ψ1 = . . . ψN = 0, where we have also Ψ1 = . . . = ΨN = 0,
R1 = . . . RN = 1, r = 1. Thus, the completely coherent state is a degenerate equilibrium, which displays a saddle-
node-on-limit-cycle bifurcation in each component.

During the intervals between the velocity peaks, the system comes close to the uniformly phase locked solution
and we have Rk(t) close below 1, and r(t) close below 1. Regarding these quantities as external parameters, each
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oscillator k can be either in a stable excitable or oscillatory regime, depending on whether

Ek =
cos(K(1− r))

Rk

is smaller or bigger than 1, respectively. The oscillator may change between these regimes upon small changes of r
and Rk, which are both close below 1. Note that an increasing total number of velocity peaks decreases the global
order parameter r, thus decreasing the numerator of Ek. This acts as a global, i.e. long range inhibition, taking all
oscillators towards the non-oscillatory regime. In particular, for increasing K we have a stronger inhibition, which
explains the increasing distance of the peaks in this situation.

In contrast, a locally increasing number of velocity peaks (say, for oscillators j near a given index k) decreases
the local order parameter Rk in the denominator, increasing Ek and pushing the oscillator k towards the oscillatory
regime. Hence, it acts as a local activation. This interplay of activation and inhibition in a discrete excitable medium
close to threshold explains a mechanism of self-modulated excitability, where in the self-organized region of oscillatory
motion the observed variety of regular and irregular patterns can take place.

V. CONCLUSIONS

We have shown that in addition to the well elaborated approach of studying chimera states in the framework of the
continuum limit N →∞, there is also a way to study their emergence for small N by methods of classical dynamical
systems theory. In particular, we could show that in the feedback system investigated here chaotic chimera states can
be found as true chaotic attractors, emerging in well understood transitions such as period doubling cascades, torus
breakup, and intermittency. An increasing global feedback parameter K, pushing the dynamics closer towards the
unstable completely coherent state induces a condensation of the irregular chimera states to simple regular patterns
composed of localized phase slipping events of single oscillators. Moreover, we could show that discrete excitable
media with nonlocal and global coupling can support not only the classical scenario of propagating of excitation
waves, but also a pattern formation process leading to self-localized regions of excitation organized by an interplay
between short range activation and long range inhibition.
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