2,124 research outputs found
A nitroxide-containing cathode material for organic radical batteries studied with pulsed EPR spectroscopy
An electron spin echo in a nitroxide-containing polymer cathode film for organic radical batteries is observed for various states of charge at cryogenic temperatures. The EPR-detected state of charge (ESOC), as inferred from the number of paramagnetic centers in the film, is compared to the results of Coulomb counting based on galvanostatic charging. Spin concentration, longitudinal relaxation times T(1 )and phase memory times T-m strongly correlate with the ESOC. In the discharged film, the spin concentration reaches 5 +/- 3x10(20) cm(-3), causing a phase memory time T-m << 100 ns (shorter than the resonator ring-down time) that hinders the detection of the spin echo. In the charged film, the decreased spin concentration results in a longer T-m between 100 ns and 300 ns that enables spin-echo detection, yet limits the length of the microwave pulse sequence. The short, broad-band pulses cause instantaneous diffusion in the unoxidized domains across the oxidized film, affecting the relative peak intensities in the pulsed EPR spectrum. By simulating the spectral distortion caused by instantaneous diffusion, we obtain information on the local spin concentration, which complements the information on the 'bulk' spin concentration determined by electrochemistry and continuous-wave EPR spectroscopy
Numerical Simulation of Coupled Thermo-Hydro-Mechanical Processes in Freezing Soils
In the study a thermo-hydro-mechanical model of freezing of saturated soil is presented, with focus on numerical simulation of artificial ground freezing (AGF). Artificial freezing of saturated soils induces such process in the soils as water migration, frost heave and consolidation which can have an effect on the freezing process and surrounding areas. To take into account the important from geotechnical point of view processes the thermo-hydromechanical model was developed. The model is based on the fundamental balance equations of continuum media mechanics. The Clausius-Clapeyron equation and constitutive relations of poromechanics are used for describing a relationship between pore pressure, temperature, stress and strain fields. Also an inelastic strain is included accounting for an effect of frost heave. The equations of the model were implemented in Comsol Multiphysics® software and solved using the finite element method relative to variables of porosity temperature and displacement. Numerical simulation of artificial freezing of a soil stratum for a vertical shaft sinking was carried out. A mesh convergence of numerical solution was analyzed. Results of the simulation have shown the model enables to describe a frozen wall formation with a coupled change of porosity, water pore pressure, volumetric strain and mean stress
Global changes in the proteome of Cupriavidus necator H16 during poly-(3-hydroxybutyrate) synthesis from various biodiesel by-product substrates
Additional file 1: Table S1. P-scores of proteomic runs of C. necator H16 grown with different substrates
a [Ni(Salen)]‐TEMPO redox‐conducting polymer for organic batteries
Redox-active nitroxyl-containing polymers are promising candidates as possible replacements for inorganic based energy-storage materials, due to their high energy density and fast redox kinetics. One challenge towards the implementation of such a system is the insufficient electrical conductivity, impeding the charge collection even with highly conductive additives. Herein, the first implementation of a polymeric bis(salicylideniminato) nickel (NiSalen) conductive backbone as an active charge-collecting wire is reported. NiSalen simultaneously serves as a charge collector for nitroxyl pendants and supports the redox capacity of the material. This novel polymer exhibits a specific capacity of up to 91.5 mAh g−1, retaining 87 % of its theoretical capacity at 800 C and more than 30 % at as high as 3000 C (66 % capacity retention after 2000 cycles). The properties of the new material upon operation was studied by means of operando electrochemical methods, UV-Vis, and electron paramagnetic resonance spectroscopy
Spins at work: probing charging and discharging of organic radical batteries by electron paramagnetic resonance spectroscopy
Organic radical batteries (ORBs) are a promising class of electrochemical power sources employing organic radicals as redox-active groups. This article reports on the development of a versatile on-substrate electrode setup for spectroelectrochemical Electron Paramagnetic Resonance (EPR) measurements on redox conductive polymers for ORBs. Quantitative in operando EPR experiments performed on electrochemical cells with a di-TEMPO Ni-Salen polymer as active electrode material demonstrate a strong decrease in the number of paramagnetic centers upon oxidizing the film. The distinct EPR signatures of the TEMPO-containing polymer and its fragments in different molecular environments are used to study its degradation upon repeated cycling. A comparison between the number of EPR-active sites and the number of electrochemically active charges, as measured by cyclic voltammetry, provides information on the nature of the degradation process. Low-temperature ex situ pulse EPR measurements on the oxidized polymer film reveal the spectrum of dilute nitroxide species, which may be associated with electrochemically inactive islands. These experiments pave the way for advanced EPR techniques for accurately determining distances between adjacent paramagnetic centers and thus for identifying performance-limiting loss mechanisms, which can eventually help develop strategies for making ORBs powerful contenders on the path towards sustainable electrochemical power sources
Enhanced whole genome sequence and annotation of Clostridium stercorarium DSM8532T using RNA-seq transcriptomics and high-throughput proteomics
BACKGROUND: Growing interest in cellulolytic clostridia with potential for consolidated biofuels production is mitigated by low conversion of raw substrates to desired end products. Strategies to improve conversion are likely to benefit from emerging techniques to define molecular systems biology of these organisms. Clostridium stercorarium DSM8532(T) is an anaerobic thermophile with demonstrated high ethanol production on cellulose and hemicellulose. Although several lignocellulolytic enzymes in this organism have been well-characterized, details concerning carbohydrate transporters and central metabolism have not been described. Therefore, the goal of this study is to define an improved whole genome sequence (WGS) for this organism using in-depth molecular profiling by RNA-seq transcriptomics and tandem mass spectrometry-based proteomics. RESULTS: A paired-end Roche/454 WGS assembly was closed through application of an in silico algorithm designed to resolve repetitive sequence regions, resulting in a circular replicon with one gap and a region of 2 kilobases with 10 ambiguous bases. RNA-seq transcriptomics resulted in nearly complete coverage of the genome, identifying errors in homopolymer length attributable to 454 sequencing. Peptide sequences resulting from high-throughput tandem mass spectrometry of trypsin-digested protein extracts were mapped to 1,755 annotated proteins (68% of all protein-coding regions). Proteogenomic analysis confirmed the quality of annotation and improvement pipelines, identifying a missing gene and an alternative reading frame. Peptide coverage of genes hypothetically involved in substrate hydrolysis, transport and utilization confirmed multiple pathways for glycolysis, pyruvate conversion and recycling of intermediates. No sequences homologous to transaldolase, a central enzyme in the pentose phosphate pathway, were observed by any method, despite demonstrated growth of this organism on xylose and xylan hemicellulose. CONCLUSIONS: Complementary omics techniques confirm the quality of genome sequence assembly, annotation and error-reporting. Nearly complete genome coverage by RNA-seq likely indicates background DNA in RNA extracts, however these preps resulted in WGS enhancement and transcriptome profiling in a single Illumina run. No detection of transaldolase by any method despite xylose utilization by this organism indicates an alternative pathway for sedoheptulose-7-phosphate degradation. This report combines next-generation omics techniques to elucidate previously undefined features of substrate transport and central metabolism for this organism and its potential for consolidated biofuels production from lignocellulose. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2164-15-567) contains supplementary material, which is available to authorized users
Method for solvig inverse Stefan problem to control ice wall state during shaft excavation
Mathematical statement of direct and inverse problem of Stefan for horizontal layer of rock massif with homogenous and isotropic thermophysical properties is presented. It is assumed as a hypothesis that heat transfer in vertical direction is negligible compared to heat exchange in horizontal plane. At the initial moment, the rock massif has a uniform temperature and the temperature on surfaces of freezing columns was the same for all columns and constant in time. A method proposed allows getting an approximate solution of the direct Stefan problem for a single freezing column with a small consumption of computational resources. Based on a proposed method, a high-speed algorithm for solving inverse Stefan problem for the case of a single freezing column is built. An algorithm is based on the gradient descent method. The effect on the solution of different types of functions used is analyzed. Functions approximate the temperature field in a cooling zone. It is established that time dependence of the radius of a phase transition front essentially depends on the type of an approximation function. The most preferable is an integral exponential function that is a solution to the one-dimensional heat equation in cylindrical coordinates. Then, proposed technique and algorithm are considered for the case of variety of freezing columns that form circle counter and random number of control wells. Results of the calculation of inverse Stefan problem for conditions of the shaft No. 1 of the mine being under construction at the Petrikovsky ore mining and processing enterprise are presented. The calculation included well inclinometry based on geological data. It was studied how measurements of the temperature made at different wells can affect obtaining solution. Options of interpretation of inconsistency of temperatures measured in control wells are offered. Probabilistic analysis of ice wall thickness is carried out
- …