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Abstract. In the study a thermo-hydro-mechanical model of freezing of saturated soil is 
presented, with focus on numerical simulation of artificial ground freezing (AGF). Artificial 
freezing of saturated soils induces such process in the soils as water migration, frost heave 
and consolidation which can have an effect on the freezing process and surrounding areas. To 
take into account the important from geotechnical point of view processes the thermo-hydro-
mechanical model was developed. The model is based on the fundamental balance equations 
of continuum media mechanics. The Clausius-Clapeyron equation and constitutive relations 
of poromechanics are used for describing a relationship between pore pressure, temperature, 
stress and strain fields. Also an inelastic strain is included accounting for an effect of frost 
heave. The equations of the model were implemented in Comsol Multiphysics® software and 
solved using the finite element method relative to variables of porosity temperature and 
displacement. Numerical simulation of artificial freezing of a soil stratum for a vertical shaft 
sinking was carried out. A mesh convergence of numerical solution was analyzed. Results of 
the simulation have shown the model enables to describe a frozen wall formation with a 
coupled change of porosity, water pore pressure, volumetric strain and mean stress. 

 
 

1 INTRODUCTION 

A research of artificial freezing of saturated soils is largely caused by interests of 
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underground engineering. To construct tunnels and mine shafts under hard hydrogeological 
conditions some activities for soil reinforcement have to be conducted. Artificial Ground 
Freezing (AGF) is an effective engineering technique which enables to prevent failure of an 
excavation and its water flooding [1]. A decrease in ground temperature leads to freezing of 
pore water and generating ice crystals which improve strength and stiffness properties of the 
freezing ground and obstruct a water flow in the pore space. Therefore, frozen ground serve as 
waterproof temporary shield around a constructed excavation [2]. 

Currently, computer modeling is started to apply for predicting an evolution of the ground 
freezing process and controlling freezing regimes. However numerical simulation of freezing 
of saturated soils is a complex problem involving an interaction between thermal, hydraulic 
and mechanical processes. One of the results of the interaction is an occurrence of cryogenic 
suction which induces water migration towards the freezing zone. To describe an influence of 
the water migration on the freezing process a thermo-hydraulic models are developed. Harlan 
[3] was proposed one of the first model which enables to compute heat and mass transfer in 
freezing soil. The model includes the Richards equation and a heat conduction equation with 
apparent heat capacity coefficient. Numerical algorithm for solving the equations is developed 
for one-dimensional transient problem using the finite difference method. The Harlans’s 
model provided a basis for derivation of many mathematical models of soil freezing [4]. 
Modern thermo-hydraulic models are able to be applied for simulation of ground freezing 
process in geotechnical applications. A thermo-hydraulic model of Tan X et al. [5] was used 
for study of soil freezing around a tunnel. Huang S. et al. [6] developed a model for AGF for 
tunneling excavation. On the base of the model optimization of freezing wells arrangement 
around a tunnel was determined taking into account a seepage flow. In these model cryogenic 
suction is taken into account using segregation potential and Darcy’s law is adopted for 
evaluating water velocity. To obtain a numerical solution of mass balance and energy 
conservation equations of the model the finite element method is applied. 

In freezing soil water migration contributes to frost heaving of the soil in the frozen zone 
and soil consolidation in the unfrozen zone. Due to frost heave and consolidation a stress-
strain state of the freezing soil is significantly changed that can induce negative mechanical 
effect on surrounding areas. To take into account a mechanical behavior of freezing soil a 
thermo-hydro-mechanical models are developed [7–10]. Bekele et al. applied their model for 
numerical study of an effect of freezing soil on a buried pipeline [7]. A model proposed by 
Arzanfudi and Al-Khoury is used for simulation of freezing and thawing of soil around an 
energy pile [8]. Large-scale simulation of AGF for tunneling excavation is performed using 
models developed by Zhou and Meschke [9], Tounsi et al. [10]. The thermo-hydro-
mechanical models in addition to mass balance and energy conservation equations include the 
momentum balance equation and constitutive relations establishing a relationship between 
stress and strain fields. Heat and mass transfer in the models are described similar to thermo-
hydraulic models. To incorporate cryogenic suction, the Clausius-Clapeyron equation is 
adopted. A stress-strain state of freezing soil is simulated using constitutive relations of 
poromechanics theory and a conception of effective stress. The effective stress tensor is 
written in the Bishop form that enables to take into account an effect of ice pore pressure on 
the rigid skeleton. Also a state equation is included in the model to estimate an influence of 
pore pressure and volumetric strain on soil porosity. In [9,10] numerical solution of the 
governing equations is performed using the finite element method. In [7] numerical algorithm 
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is developed based on the isogeometric analysis. Spatial discretization scheme proposed in [8] 
includes the finite element method for the balance equations and the extended finite element 
method for the cryogenic suction equation. In [8] it is noted that solution of the cryogenic 
suction equation using the finite element method could lead to oversmooth pressure 
distribution.  

In the abovementioned thermo-hydro-mechanical models the mass balance equation is 
solved relative to pressure variable. Another approach was proposed by Lai et al. [11]. In the 
model solution of the mass balance equation is conducted relative to soil porosity. Based on 
experimental data of one-side freezing test it has been shown that the model enables to 
accurately describe porosity evolution induced by frost heave and consolidation of freezing 
soil. However, the model can be applied for simulation of one-dimensional freezing process. 
Following to approach of Lai et al. [11] in the present study a three-dimensional thermo-
hydro-mechanical model of freezing of saturated soil is developed. In the developed model to 
simulate water migration due to cryogenic suction, the Darcy law and the Clausius-Clapeyron 
equation are adopted. Latent heat of the phase change is incorporated in the energy 
conservation equation through volumetric heat source. Mechanical behavior of freezing soil is 
described within the framework of the Coussy poromechanics [9, 10, 12]. As frost heave 
induces a significant volumetric expansion of freezing soil, constitutive relation for inelastic 
volumetric strain is included. The governing equations of the model were implemented in the 
finite-element software Comsol Multiphysics®. The developed model was used for numerical 
simulation of a large-scale geotechnical problem related to application of AGF for a vertical 
shaft sinking in a potash deposit. 

2 THERMO-HYDRO-MECHANICAL MODEL OF SOIL FREEZING 

2.1 Mathematical formulation 

In the developed thermo-hydro-mechanical model of freezing of saturated soil, the soil is 
considered as porous media consisting of solid skeleton and pore space. In initial state pore 
space contains only water phase (l). During freezing the pore water converts into the ice phase 
(i). To simulate thermo-hydro-mechanical processes arising in the freezing soil, the mass 
balance equation, the energy conservation equation and the momentum balance equation are 
derived within the continuum mechanics approach. A couple between heat transfer and water 
migration is provided by temperature dependent ice saturation and hydraulic conductivity, the 
Clausius-Clapeyron equation, convective heat transfer. An interaction between a change of 
porosity and a stress-strain state of the soil is established according to Coussy poromechanics. 
Thermo-mechanical coupling is given by a dependence of mechanical properties on 
temperature and thermal strain. 

Mathematical formulation of the governing equation of the model is written as following. 
The mass balance equation is 

div( ) 0.
( ) ( )

l
l l i i

l

S n S n

t t

 



 






v  (1) 

The momentum balance equation is 

div 0. σ γ  (2) 
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The energy conservation equation is 

( )
div grad grad .i

l iC
nST

T C T L
t t

 


  
 

 v  (3) 

In the equations ρjSjn is the mass content of water (j = l) and ice (j = i) at time t, ρj is the 
density and Sj is saturation of the phase j, n is the porosity, vl is the velocity of water relative 
to the solid skeleton, σ is the total stress tensor, γ is the unit weight of the porous medium, T 
is the temperature, C is the volumetric heat capacity and λ is the thermal conductivity of the 
porous media, L is latent heat of the phase transition. 

The ice saturation Si is given by an empirical function of the temperature T: 

1 1 ( )
, ,

0

phph

i
ph

T TT T
S

T T


       



 (4) 

where Tph is the freezing temperature of pore water and α is an experimental parameter. The 
water saturation Sl can be obtained from the condition of fully saturated porous media. 

To evaluate the water velocity vl, the Darcy law is adopted 

grad ,l k  v  (5) 

where k is the hydraulic conductivity and ψ is the soil-water potential depended on the pore 
water pressure pl. The hydraulic conductivity k is expressed through function of the 
temperature T: 

0 1 ( )
, ,

0

phph

ph

T Tk T T
k

T T


      



 (6) 

where k0 is the hydraulic conductivity of the unfrozen soil, β is an experimental parameter. 
The total stress tensor is written according to effective stress principle as [12] 

,bp σ σ I  (7) 

where σ  is the effective stress, p is the eqivalent pore pressure, b is the effective Biot 
coefficient, I is the identity tensor. The effective stress σ  is expressed through the elastic 

strain eε  using the Hooke’s law 

2
2 ,

3
e e
volK G G

     
 

σ I ε  (8) 

where K is the effective bulk modulus, G is the effective shear modulus, e
vol  is the volumetric 

part of the tensor eε . 
According to the principle of the additive decomposition of the total strain ε , the elastic 

strain eε  is written as 

e th in  ε ε ε ε , (10) 

where thε  is the thermal strain, inε  is inelastic strain. The total strain ε  is defined through the 
displacement vector u according to the infinitesimal strain theory. 

The equivalent pore pressure p is assumed to be weighted sum of the pore water pressure pl 
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and the pore ice pressure pi: 
(1 )l ip p p    , (11) 

where χ is a parameter, such that 1.5(1 )iS   . 

The pore water pressure pl is expressed from (11) and the Clausius-Clapeyron equation as 
follows [11] 

 (1 )( ) (1 ) ln /

(1 )

l i hydr i l ph l

l

l i

p L T T p
p

      

  

    


 
, (12) 

where phydr is the initial pressure.  
To evaluate the pore pressure p a state equation provided by the Coussy poromechanics is 

used 

0 0 0 )3( ( )( )e
vol Tp b n T TN n n b       , (13) 

where n0 is the initial porosity, N is the effective Biot tangent modulus. 

The inelastic strain inε  is responsible for volumetric expansion of the freezing soil on 
effect of the frost heave. Ghoreishian Amiri et al. [13] are noted that high cryogenic suction 
can lead to inelastic volumetric strain in freezing soil. In the study a condition of exceeding of 
cryogenic suction its threshold value is used as yield criterion. According to the approach we 

introduce the volumetric inelastic strain ε in
vol  related to tension of freezing soil due to ice 

segregation: 

ε .in in
volε I , (14) 

In contrast of [13] we determine yield criterion F in the following form: 

mF A B   , (15) 

with  

6 cos 2sin
,

3(3 sin ) 3(3 sin )

c
A B

 

 
 

 
, (16) 

where m   is the effective mean stress, c, φ are cohesion and friction angle of soil in an 

unfrozen state. The strain ε in
vol  is computed from (14) according to the associated flow rule of 

plasticity. It should be noted that the inelastic strain is induced by a formation of the massive 
cryogenic structure and thin ice lenses in saturated soil during freezing. A growth of thick ice 
lenses are not considered. 

The effective mechanical properties are computed as in [9]: 

(1 ) ,fr unX X X    , (17) 

where X is the effective value, Xfr and Xun are values for the frozen and the unfrozen states.  
Thermophysical properties are determined as in [14]. 
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3.2 Computer implementation 

The partial differential equation of the developed model is solved by the Comsol 
Multiphysics® software. Porosity n, displacement vector u and temperature T were 
considered as primary field variables. For spatial discretization of the equations the finite 
element method was applied. Approximation of the field variables was performed by linear 
Lagrange shape functions. Temporal discretization was conducted according to the backward 
Euler scheme. 

3 NUMERICAL SIMULATION OF ARTIFICIAL GROUND FREEZING 

The developed model (1)-(17) was used for numerical simulation of AGF for a vertical 
shaft sinking in a potash deposit in the Republic of Belarus. The deposit is exploited by the 
Belaruskali Company. 

The simulation was performed for a silt stratum laying at the depth of 50–58 m. The 
thermal regimes and design parameters of artificial freezing were specified on the basis of the 
technical and design documentation of the Belaruskali Company for construction of vertical 
mine shafts. 

Figure 1a presents the arrangement of freezing wells around the project excavation. The 
number of wells is forty-one. The wells are located in a circle with a radius of 8.25 m. The 
radius of the freezing wells is 7.3 10-2 m. The distance between two wells is 1.11 m.  

 

(a) (b) 

Figure 1: The layout of freezing wells. Red lines border the considered area (a). The geometry of the 
computational domain and the layout of the boundary conditions (b). 

Neglecting inclination of the freezing wells from vertical direction and due to symmetry 
conditions we can study the artificial freezing process in a domain bounded by two symmetry 
planes. In Figure 1a projections of the symmetry planes are shown in Figure 1a with red lines. 
The first plane passes through the center of a freezing well. The second plane passes through 
the middle of the distance between the chosen well and the neighboring one. In what follows, 
we will call this plane the middle plane. 

The computational domain and a layout of the boundary conditions are shown in Figure 
1b. The distance from the center of the projected excavation to the outer boundary is 16.5 m. 
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The top boundary is subjected to the overburden pressure Pob = 1 MPa. On the bottom 
boundary the vertical displacement uz is fixed. On boundary of the freezing well and the outer 
boundary the displacement u is constrained in the horizontal direction. Also the displacement 
u is constrained in the horizontal direction at the inner edge due to the symmetry condition. 
Temperature T and porosity n are given on the boundary of the freezing well and the outer 
boundary. On the freezing well boundary the temperature T is equal to the freezing 
temperature Twell, the porosity is equal to 1.09n0. Minimal freezing temperature is –20 C. On 
the outer boundary temperature T and porosity n on the surface are supposed to be constant 
and equal to the initial values T0 = 10 C and n0 = 0.32. 

To obtain a numerical solution the computational domain was divided on triangular prism 
elements such that lateral boundary of the prism elements is parallel to the vertical direction. 
Near the freezing well boundary the computational mesh was refined. 

Figure 2 shows results of an analysis of convergence of numerical solution dependent on a 
mesh size. The average size havr of triangular base of elements of a reference mesh is 0.19 m. 
The number of elements in the reference mesh is 22374. The mesh enlargement was 
performed using a scale procedure with coefficients of 1.1, 1.3, 1.5, 2.0, 4.0. 
 

 

(a) (b) (c) 

Figure 2: A computational error of numerical solution for porosity (a), temperature (b), displacement (c) 
dependent on mesh size. 

A computational error was estimated as follows 

2

0

2

0

( ) d d

( ) d d

t

e

t

e

var var V t

err

var V t








 

 

, 
(18) 

where Ω is a computational domain, var corresponds to a numerical solution for one of the 
primary field variables which is the porosity n, the temperature T and the displacement vector 
u, vare corresponds to a numerical solution obtained on the reference mesh. The simulation of 
the artificial freezing process was conducted for a time period of 140 days. 

From Figure 2 it can be seen that the computational errors of all primary field variables 
decrease with reducing of size of the computational mesh. A mesh refinement in two times 
from scale coefficient 4 to 2 leads to a fast reduction of the errors for all variables. After that 
the errors slowly convergences to zero with decreasing the mesh size. Therefore, it can be 
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concluded that proposed numerical scheme provides a convergent numerical solution of the 
set of the partial differential equations (1) – (3). 

Figure 3 shows temperature T distribution after 16, 38, 140 days of the freezing. The 
freezing process can be divided in two stages. In the first stage the freezing front propagates 
form the freezing well to the middle plane. At the end of the stage a closure of the frozen wall 
around the projected excavation is achieved. In the second stage a thickness of the frozen wall 
increases along with propagation of the freezing front to external surrounding soil. 

Porosity n distributions after 38, 70, 140 days of the freezing are presented in Figure 4. 
Due to intensive frost heave of the silt in the frozen zone the porosity raises by 22% compared 
to the initial value. As the freezing of original water content can induce a rise of porosity only 
by 9%, it can be concluded that cryogenic suction causes a significant water migration to the 

 

Figure 3: Distributions of the temperature T C after 16, 38 and 140 days of freezing. Blue lines correspond to 
the position of the freezing front. 

 

Figure 4: Distributions of the porosity n after 38, 70 and 140 days of freezing. White lines correspond to the 
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position of the freezing front. 

frozen zone. Result of the water flow from the unfrozen zone to the frozen zone is a reduction 
of the porosity and soil consolidation near the freezing front. Besides, a region with reduced 
porosity arises adjoining to the middle plane. In the first stage of the freezing process 
cryogenic suction gives rise to water migration from the region to the freezing front. 
Therefore, when the freezing front reaches the middle plane in the region the porosity rises 
only by 5%. 

Figure 5 shows distribution of volumetric strain εvol and mean effective stress m   after 70 

days of the freezing. It can be seen a strong coupling between the porosity distribution and the 
stress-strain state of the soil. In the frozen zone a raise in the porosity is accompanied by a 
volumetric expansion of the solid skeleton and an increase in the mean stress that is typical 
for frost heave. Nevertheless, in the region with reduced porosity adjoining to the middle 
plain the volumetric strain and the mean stress remain negative because of a weak frost heave. 
In rest part of the frozen wall the mean stress reaches a tensile strength, so an inelastic 
volumetric strain evolves according to the yield criterion (15) and the associated flow rule. 
Near the sides of the frozen wall (white lines in Figures 4, 5) a decrease in the porosity is 
accompanied by volumetric shrinkage of the soil and a reduction of the mean stress, so the 
soil consolidates. Also it can be observed that unfrozen soil inside of the frozen wall is 
compressed more significantly than outside of the wall. It can be explained by an impact of 
frost heave of soil during the freezing. 

The consolidation of the unfrozen soil inside the frozen wall leads to rise in the pore water 
pressure pl. Figure 6 shows a change in the pore pressure with time at a point inside a contour  

 

(a) (b) 

Figure 5: Distributions of the volumetric strain εvol (a) and the mean effective stress m   (b) after 70 days of the 

freezing. White lines correspond to the position of the freezing front. 
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Figure 6: Temporal evolution of the water pore pressure at a point inside the contour of the freezing wells. 

of the freezing wells. It can be seen that in the first stage of the freezing the pore pressure 
slightly increases under a mechanical impact of the frozen soil. After achieving a closed 
frozen wall, the pore pressure rises abruptly since the mechanical impact on the unfrozen soil 
significantly increases and the pore water cannot outflow. Then the pore pressure 
monotonically rises until an effect of cryogenic suction exceeds the mechanical impact. 
Finally, water migration to the freezing front induces a decrease in the pore pressure. 

4 CONCLUSIONS 

In the paper, a thermo-hydro-mechanical model of freezing of saturated soil is presented. 
The model is based on the mass balance equation, the energy conservation equation and the 
momentum equation. The coupling between thermal, hydraulic and mechanical processes is 
provided thorough the Clausius-Clapeyron equation, constitutive relations of the Coussy 
poromechanics, volume heat and mass source terms, convective term and empirical equations 
for describing a change of soil properties with temperature. Also in the model a volumetric 
inelastic strain is included to describe a volumetric expansion of the soil due to frost heave. 
The equations of the model were implemented in the Comsol Multiphysics software and 
solved using the finite element method. 

The proposed model was applied for numerical simulation of artificial freezing process of 
a soil stratum for a vertical shaft sinking. An analysis of the mesh convergence has shown that 
a use of the developed numerical scheme allowed one to obtain a convergent numerical 
solution of the equations of the model. Results of the performed numerical simulation 
demonstrated that the model is able to describe a frozen wall formation with considering such 
important phenomena such as water migration to the freezing front, frost heave in frozen zone 
and the soil consolidation in the unfrozen zone. It was shown that due to water migration an 
intensive frost heave evolves in the frozen zone. The frost heave leads to a rise in the porosity 
and inelastic volumetric expansion of the freezing soil. A water outflow from the unfrozen 
zone to the frozen zone contributes to soil consolidation near the sides of the frozen wall and 
in the region adjusting to the middle plane. After a closure of the frozen wall an increase in its 
thickness causes an abrupt rise of the pore water pressure in the unfrozen soil inside the wall 
due to a mechanical impact of the frozen soil. Nevertheless, during the freezing a strong 
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cryogenic suction induces water migration to the inner side of the wall as a result the pore 
pressure decreases. 
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