141 research outputs found

    Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development

    Get PDF
    The formation of nitrogen-fixing nodules in legumes involves the initiation of synchronized programs in the root epidermis and cortex to allow rhizobial infection and nodule development. In this study, we provide evidence that symplastic communication, regulated by callose turnover at plasmodesmata (PD), is important for coordinating nodule development and infection in Medicago truncatula. Here, we show that rhizobia promote a reduction in callose levels in inner tissues where nodules initiate. This downregulation coincides with the localized expression of M. truncatula β-1,3-glucanase 2 (MtBG2), encoding a novel PD-associated callose-degrading enzyme. Spatiotemporal analyses revealed that MtBG2 expression expands from dividing nodule initials to rhizobia-colonized cortical and epidermal tissues. As shown by the transport of fluorescent molecules in vivo, symplastic-connected domains are created in rhizobia-colonized tissues and enhanced in roots constitutively expressing MtBG2. MtBG2-overexpressing roots additionally displayed reduced levels of PD-associated callose. Together, these findings suggest an active role for MtBG2 in callose degradation and in the formation of symplastic domains during sequential nodule developmental stages. Interfering with symplastic connectivity led to drastic nodulation phenotypes. Roots ectopically expressing β-1,3-glucanases (including MtBG2) exhibited increased nodule number, and those expressing MtBG2 RNAi constructs or a hyperactive callose synthase (under symbiotic promoters) showed defective nodulation phenotypes. Obstructing symplastic connectivity appears to block a signaling pathway required for the expression of NODULE INCEPTION (NIN) and its target NUCLEAR FACTOR-YA1 (NF-YA1) in the cortex. We conclude that symplastic intercellular communication is proactively enhanced by rhizobia, and this is necessary for appropriate coordination of bacterial infection and nodule development

    Nonlinear Time Series Analysis of Nodulation Factor Induced Calcium Oscillations: Evidence for Deterministic Chaos?

    Get PDF
    Legume plants form beneficial symbiotic interactions with nitrogen fixing bacteria (called rhizobia), with the rhizobia being accommodated in unique structures on the roots of the host plant. The legume/rhizobial symbiosis is responsible for a significant proportion of the global biologically available nitrogen. The initiation of this symbiosis is governed by a characteristic calcium oscillation within the plant root hair cells and this signal is activated by the rhizobia. Recent analyses on calcium time series data have suggested that stochastic effects have a large role to play in defining the nature of the oscillations. The use of multiple nonlinear time series techniques, however, suggests an alternative interpretation, namely deterministic chaos. We provide an extensive, nonlinear time series analysis on the nature of this calcium oscillation response. We build up evidence through a series of techniques that test for determinism, quantify linear and nonlinear components, and measure the local divergence of the system. Chaos is common in nature and it seems plausible that properties of chaotic dynamics might be exploited by biological systems to control processes within the cell. Systems possessing chaotic control mechanisms are more robust in the sense that the enhanced flexibility allows more rapid response to environmental changes with less energetic costs. The desired behaviour could be most efficiently targeted in this manner, supporting some intriguing speculations about nonlinear mechanisms in biological signaling

    A single evolutionary innovation drives the deep evolution of symbiotic N<sub>2</sub>-fixation in angiosperms

    Get PDF
    Symbiotic associations occur in every habitat on earth, but we know very little about their evolutionary histories. Current models of trait evolution cannot adequately reconstruct the deep history of symbiotic innovation, because they assume homogenous evolutionary processes across millions of years. Here we use a recently developed, heterogeneous and quantitative phylogenetic framework to study the origin of the symbiosis between angiosperms and nitrogen-fixing (N2) bacterial symbionts housed in nodules. We compile the largest database of global nodulating plant species and reconstruct the symbiosis’ evolution. We identify a single, cryptic evolutionary innovation driving symbiotic N2-fixation evolution, followed by multiple gains and losses of the symbiosis, and the subsequent emergence of ‘stable fixers’ (clades extremely unlikely to lose the symbiosis). Originating over 100 MYA, this innovation suggests deep homology in symbiotic N2-fixation. Identifying cryptic innovations on the tree of life is key to understanding the evolution of complex traits, including symbiotic partnerships

    The environmental impact of fertilizer embodied in a wheat-to-bread supply chain

    Get PDF
    Food production and consumption cause approximately one-third of total greenhouse gas emissions, and therefore delivering food security challenges not only the capacity of our agricultural system, but also its environmental sustainability. Knowing where and at what level environmental impacts occur within particular food supply chains is necessary if farmers, agri-food industries and consumers are to share responsibility to mitigate these impacts. Here we present an analysis of a complete supply chain for a staple of the global diet, a loaf of bread. We obtained primary data for all the processes involved in the farming, production and transport systems that lead to the manufacture of a particular brand of 800 g loaf. The data were analysed using an advanced life cycle assessment (LCA) tool, yielding metrics of environmental impact, including greenhouse gas emissions. We show that more than half of the environmental impact of producing the loaf of bread arises directly from wheat cultivation, with the use of ammonium nitrate fertilizer alone accounting for around 40%. These findings reveal the dependency of bread production on the unsustainable use of fertilizer and illustrate the detail needed if the actors in the supply chain are to assume shared responsibility for achieving sustainable food production

    Role of Symbiotic Auxotrophy in the Rhizobium-Legume Symbioses

    Get PDF
    Symbiotic auxotrophy occurs in both determinate pea and indeterminate bean nodules demonstrating its importance for bacteroid formation and nodule function in legumes with different developmental programmes. However, only small quantities of branched chain amino acids are needed and symbiotic auxotrophy did not occur in the Sinorhizobium meliloti-alfalfa symbiosis under the conditions measured. The contrasting symbiotic phenotypes of aap bra mutants inoculated on different legumes probably reflects altered timing of amino acid availability, development of symbiotic auxotrophy and nodule developmental programmes

    MediPlEx - a tool to combine in silico & experimental gene expression profiles of the model legume Medicago truncatula

    Get PDF
    Henckel K, Küster H, Stutz L, Goesmann A. MediPlEx - a tool to combine in silico and experimental gene expression profiles of the model legume Medicago truncatula. BMC Research Notes. 2010;3(1): 262.BACKGROUND:Expressed Sequence Tags (ESTs) are in general used to gain a first insight into gene activities from a species of interest. Subsequently, and typically based on a combination of EST and genome sequences, microarray-based expression analyses are performed for a variety of conditions. In some cases, a multitude of EST and microarray experiments are conducted for one species, covering different tissues, cell states, and cell types. Under these circumstances, the challenge arises to combine results derived from the different expression profiling strategies, with the goal to uncover novel information on the basis of the integrated datasets.FINDINGS:Using our new application, MediPlEx (MEDIcago truncatula multiPLe EXpression analysis), expression data from EST experiments, oligonucleotide microarrays and Affymetrix GeneChips can be combined and analyzed, leading to a novel approach to integrated transcriptome analysis. We have validated our tool via the identification of a set of well-characterized AM-specific and AM-induced marker genes, identified by MediPlEx on the basis of in silico and experimental gene expression profiles from roots colonized with AM fungi.CONCLUSIONS:MediPlEx offers an integrated analysis pipeline for different sets of expression data generated for the model legume Medicago truncatula. As expected, in silico and experimental gene expression data that cover the same biological condition correlate well. The collection of differentially expressed genes identified via MediPlEx provides a starting point for functional studies in plant mutants. MediPlEx can freely be used at http://www.cebitec.uni-bielefeld.de/mediplex

    Testing the Waste Based Biorefinery Concept: Pilot Scale Cultivation of Microalgal Species on Spent Anaerobic Digestate Fluids

    Get PDF
    PurposeA waste based biorefinery approach has been tested.MethodsThis has been investigated by culturing in a 800 L photobioreactor two autotrophic microalgae namely Nannochloropsis oceanica and Scenedesmus quadricauda utilising filtered spent anaerobic digestate fluids of N:P ratio 14.22 as substrate.ResultsSignificant rates of bioremediation simultaneously with biomass and associated end product formation were achieved. Nitrogen and phosphorus of waste based media was decreased up to 90%. The biomass biochemical analysis of the microalgae when grown on the waste based formulated media demonstrated the comparable content of lipids and proteins with the species grown on f/2 media.ConclusionsTheoretical biomethane potential generation, should the algal cultures be placed in an anaerobic digester, was calculated at 0.58 L CH4 g−1 VS for N. oceanica and 0.48 L CH4 g−1 VS for S. quadricauda showing comparable results with other studies of different source of biomass

    Herbivore-induced terpenoid emission in Medicago truncatula: concerted action of jasmonate, ethylene and calcium signaling

    Get PDF
    Plant volatiles emitted by Medicago truncatula in response to feeding larvae of Spodoptera exigua are composed of a complex blend of terpenoids. The cDNAs of three terpene synthases (TPSs), which contribute to the blend of terpenoids, were cloned from M. truncatula. Their functional characterization proved MtTPS1 to be a β-caryophyllene synthase and MtTPS5 to be a multi-product sesquiterpene synthase. MtTPS3 encodes a bifunctional enzyme producing (E)-nerolidol and geranyllinalool (precursors of C11 and C16 homoterpenes) from different prenyl diphosphates serving as substrates. The addition of jasmonic acid (JA) induced expression of the TPS genes, but terpenoid emission was higher from plants treated with JA and the ethylene precursor 1-amino-cyclopropyl-1-carboxylic acid. Compared to infested wild-type M. truncatula plants, lower amounts of various sesquiterpenes and a C11–homoterpene were released from an ethylene-insensitive mutant skl. This difference coincided with lower transcript levels of MtTPS5 and of 1-deoxy-d-xylulose-5-phosphate synthase (MtDXS2) in the damaged skl leaves. Moreover, ethephon, an ethylene-releasing compound, modified the extent and mode of the herbivore-stimulated Ca2+ variations in the cytoplasm that is necessary for both JA and terpene biosynthesis. Thus, ethylene contributes to the herbivory-induced terpenoid biosynthesis at least twice: by modulating both early signaling events such as cytoplasmic Ca2+-influx and the downstream JA-dependent biosynthesis of terpenoids
    corecore