27 research outputs found

    NK cell function is markedly impaired in patients with chronic lymphocytic leukaemia but is preserved in patients with small lymphocytic lymphoma

    Get PDF
    Chronic lymphocytic leukemia (B-CLL) and small lymphocytic lymphoma (SLL) are part of the same disease classification but are defined by differential distribution of tumor cells. B-CLL is characterized by significant immune suppression and dysregulation but this is not typical of patients with SLL. Natural killer cells (NK) are important mediators of immune function but have been poorly studied in patients with B-CLL/SLL. Here we report for the first time the NK cell phenotype and function in patients with B-CLL and SLL alongside their transcriptional profile. We show for the first time impaired B-CLL NK cell function in a xenograft model with reduced activating receptor expression including NKG2D, DNAM-1 and NCRs in-vitro. Importantly, we show these functional differences are associated with transcriptional downregulation of cytotoxic pathway genes, including activating receptors, adhesion molecules, cytotoxic molecules and intracellular signalling molecules, which remain intact in patients with SLL. In conclusion, NK cell function is markedly influenced by the anatomical site of the tumor in patients with B-CLL/SLL and lymphocytosis leads to marked impairment of NK cell activity. These observations have implications for treatment protocols which seek to preserve immune function by limiting the exposure of NK cells to tumor cells within the peripheral circulation

    Persistence of apoptotic cells without autoimmune disease or inflammation in CD14−/− mice

    Get PDF
    Interaction of macrophages with apoptotic cells involves multiple steps including recognition, tethering, phagocytosis, and anti-inflammatory macrophage responses. Defective apoptotic cell clearance is associated with pathogenesis of autoimmune disease. CD14 is a surface receptor that functions in vitro in the removal of apoptotic cells by human and murine macrophages, but its mechanism of action has not been defined. Here, we demonstrate that CD14 functions as a macrophage tethering receptor for apoptotic cells. Significantly, CD14−/− macrophages in vivo are defective in clearing apoptotic cells in multiple tissues, suggesting a broad role for CD14 in the clearance process. However, the resultant persistence of apoptotic cells does not lead to inflammation or increased autoantibody production, most likely because, as we show, CD14−/− macrophages retain the ability to generate anti-inflammatory signals in response to apoptotic cells. We conclude that CD14 plays a broad tethering role in apoptotic cell clearance in vivo and that apoptotic cells can persist in the absence of proinflammatory consequences

    TLR9 expression in chronic lymphocytic leukemia identifies a promigratory subpopulation and novel therapeutic target

    Get PDF
    Chronic lymphocytic leukemia (CLL) remains incurable despite B-cell receptor–targeted inhibitors revolutionizing treatment. This suggests that other signaling molecules are involved in disease escape mechanisms and resistance. Toll-like receptor 9 (TLR9) is a promising candidate that is activated by unmethylated cytosine guanine dinucleotide–DNA. Here, we show that plasma from patients with CLL contains significantly more unmethylated DNA than plasma from healthy control subjects (P < .0001) and that cell-free DNA levels correlate with the prognostic markers CD38, β(2)-microglobulin, and lymphocyte doubling time. Furthermore, elevated cell-free DNA was associated with shorter time to first treatment (hazard ratio, 4.0; P = .003). We also show that TLR9 expression was associated with in vitro CLL cell migration (P < .001), and intracellular endosomal TLR9 strongly correlated with aberrant surface expression (sTLR9; r = 0.9). In addition, lymph node–derived CLL cells exhibited increased sTLR9 (P = .016), and RNA-sequencing of paired sTLR9(hi) and sTLR9(lo) CLL cells revealed differential transcription of genes involved in TLR signaling, adhesion, motility, and inflammation in sTLR9(hi) cells. Mechanistically, a TLR9 agonist, ODN2006, promoted CLL cell migration (P < .001) that was mediated by p65 NF-κB and STAT3 transcription factor activation. Importantly, autologous plasma induced the same effects, which were reversed by a TLR9 antagonist. Furthermore, high TLR9 expression promoted engraftment and rapid disease progression in a NOD/Shi-scid/IL-2Rγ(null) mouse xenograft model. Finally, we showed that dual targeting of TLR9 and Bruton’s tyrosine kinase (BTK) was strongly synergistic (median combination index, 0.2 at half maximal effective dose), which highlights the distinct role for TLR9 signaling in CLL and the potential for combined targeting of TLR9 and BTK as a more effective treatment strategy in this incurable disease

    Effects of Tumour Necrosis Factor-alpha on Developing Cerebellar Granule and Purkinje Neurons In Vitro

    No full text
    Tumour necrosis factor-alpha (TNF-alpha) has been widely implicated in both neurodevelopment and neurodegeneration, yet its effects on individual populations of cerebellar neurons as they develop have not been fully elucidated. Therefore, we established primary neuronal cultures of developing murine cerebellar Purkinje neurons and postnatal cerebellar granule cells to determine the consequences of TNF-alpha exposure for their survival. We discovered that TNF-alpha did not affect the viability of cerebellar granule neurons at any of the ages studied, even though TNF-alpha and its receptors, TNFR1 and TNFR2, are widely expressed in the postnatal cerebellum. In addition, TNF-alpha was neither able to ameliorate, nor enhance, cell death in cerebellar granule cells elicited by a variety of stimuli including homocysteine and alcohol exposure. In contrast, in cultures established at embryonic day 16, TNF-alpha enhanced the number of cerebellar Purkinje neurons in vitro but this effect was not observed in embryonic day 19 cultures. Thus, TNF-alpha has differential and highly specific effects on different populations of cerebellar neurons as they develop.</p

    Neurotrophic effects of leptin on cerebellar Purkinje but not granule neurons in vitro

    No full text
    As recent evidence has revealed a pro-survival role for the anti-obesity hormone leptin in the nervous system, we investigated the generality of this finding on cerebellar Purkinje and granule neurons in vitro. We found that whilst leptin promoted cerebellar Purkinje neuron survival, it had no affect on cerebellar granule cells. In addition, we discovered that leptin promoted both the outgrowth of neurites from cerebellar Purkinje neurons and increased the complexity of the neurite arbor. Thus, leptin has different effects on two neighbouring populations of neurons within the cerebellum implying specificity of its actions in the central nervous system. (C) 2008 Elsevier Ireland Ltd. All rights reserved.</p

    Developmental changes in the response of murine cerebellar granule cells to nitric oxide

    No full text
    Nitric oxide is a diffusible messenger that plays a multitude of roles within the nervous system including modulation of cell viability. However, its role in regulating neuronal survival during a defined period of neurodevelopment has never been investigated. We discovered that expression of the messenger RNA for both neuronal and endothelial nitric oxide synthase increased in the early postnatal period in the cerebellum in vivo, whilst the expression of inducible nitric oxide synthase remained constant throughout this time in development. Whilst scavenging of nitric oxide was deleterious to the survival of early postnatal cerebellar granule neurons in vitro, this effect was lost in cultures derived at increasing postnatal ages. Conversely, sensitivity to exogenous nitric oxide increased with advancing postnatal age. Thus, we have shown that as postnatal development proceeds, cerebellar granule cells alter their in vitro survival responses to both nitric oxide inhibition and donation, revealing that the nitric oxide's effects on developing neurons vary with the stage of development studied. These findings have important consequences for our understanding of the role of nitric oxide during neuronal development. (C) 2008 Elsevier Ltd. All rights reserved.</p

    Effects of nitric oxide on the survival and neuritogenesis of cerebellar Purkinje neurons

    No full text
    Nitric oxide has been investigated widely both during neurodevelopment and in neurological diseases. However, whilst it has been established that nitric oxide producing enzymes of nitric oxide synthase family are expressed in cerebellar Purkinje neurons, the effects of nitric oxide on the viability and morphology of these neurons remain unknown. Here we have demonstrated that the activity of neuronal nitric oxide synthase, but not the inducible or endothelial forms of this enzyme, is required to support the survival of a proportion of cerebellar Purkinje neurons in vitro. We discovered that donation of high concentrations of exogenous nitric oxide reduces Purkinje neuron survival in culture, and that peroxynitrite is also toxic to these cells. Finally, we demonstrated that exogenous nitric oxide and peroxynitrite reduce both the magnitude and the complexity of the neurite arbor extended by cerebellar Purkinje neurons. Taken together, these findings reveal that whilst a low level of endogenous nitric oxide, released by the activity of neuronal nitric oxide synthase, is beneficial to cerebellar Purkinje neurons in vitro, high levels of exogenous nitric oxide and peroxynitrite are detrimental to both the survival of these neurons and to their ability to extend processes and thus form functional neural networks
    corecore