22 research outputs found

    The apparent genetic anticipation in PMS2-associated Lynch syndrome families is explained by birth cohort effect

    Get PDF
    BACKGROUND: PMS2-associated Lynch syndrome is characterized by a relatively low colorectal cancer penetrance compared with other Lynch syndromes. However, age at colorectal cancer diagnosis varies widely, and a strong genetic anticipation effect has been suggested for PMS2 families. In this study, we examined proposed genetic anticipation in a sample of 152 European PMS2 families. METHODS: The 152 families (637 family members) that were eligible for analysis were mainly clinically ascertained via clinical genetics centers. We used weighted Cox-type random effects model, adjusted by birth cohort and sex, to estimate the generational effect on the age of onset of colorectal cancer. Probands and young birth cohorts were excluded from the analyses. Weights represented mutation probabilities based on kinship coefficients, thus avoiding testing bias. RESULTS: Family data across three generations, including 123 colorectal cancers, were analyzed. When compared with the first generation, the crude HR for anticipation was 2.242 [95% confidence interval (CI), 1.162-4.328] for the second generation and 2.644 (95% CI, 1.082-6.464) for the third generation. However, after correction for birth cohort and sex, the effect vanished [HR = 1.302 (95% CI, 0.648-2.619) and HR = 1.074 (95% CI, 0.406-2.842) for second and third generations, respectively]. CONCLUSIONS: Our study did not confirm previous reports of genetic anticipation in PMS2-associated Lynch syndrome. Birth-cohort effect seems the most likely explanation for observed younger colorectal cancer diagnosis in subsequent generations, particularly because there is currently no commonly accepted biological mechanism that could explain genetic anticipation in Lynch syndrome. IMPACT: This new model for studying genetic anticipation provides a standard for rigorous analysis of families with dominantly inherited cancer predisposition

    The incidence of consecutive manifestations in Von Hippel-Lindau disease

    No full text
    Von Hippel-Lindau (VHL) disease is an autosomal dominant rare tumor syndrome characterized by high penetrance. VHL mutation carriers develop numerous manifestations in multiple organs during life. The natural course of development of new and growth of existing VHL-related manifestations is still unclear. In this study we aimed to gain insight into the development of subsequent manifestations in VHL disease. We retrospectively scored each new VHL-related manifestation as detected by standard follow-up (retina, central nervous system, kidneys and pancreas, excluding adrenal and endolymfatic sac manifestations) in 75 VHL mutation carriers. The Kaplan-Meier method was used to plot the cumulative proportions of all consecutive manifestations in each organ against age. The cumulative average number of manifestations in all organs during life was calculated by summating these cumulative proportions. Poisson model parameters were used to calculate average time to the detection of consecutive VHL manifestations in each organ. Consecutive VHL-related kidney and retina manifestations during life occur linearly according to Poisson distribution model. The total number of VHL manifestations rises linearly, with an average of seven VHL-related lesions at age 60 years. The incidence of consecutive VHL-related manifestations is constant during life in VHL mutation carriers. Our data is consistent with the notion that somatic inactivation of the remaining allele (Knudson's "two-hit" hypothesis) is the determining factor in developing new VHL-related manifestations

    The incidence of consecutive manifestations in Von Hippel-Lindau disease

    Get PDF
    Von Hippel-Lindau (VHL) disease is an autosomal dominant rare tumor syndrome characterized by high penetrance. VHL mutation carriers develop numerous manifestations in multiple organs during life. The natural course of development of new and growth of existing VHL-related manifestations is still unclear. In this study we aimed to gain insight into the development of subsequent manifestations in VHL disease. We retrospectively scored each new VHL-related manifestation as detected by standard follow-up (retina, central nervous system, kidneys and pancreas, excluding adrenal and endolymfatic sac manifestations) in 75 VHL mutation carriers. The Kaplan-Meier method was used to plot the cumulative proportions of all consecutive manifestations in each organ against age. The cumulative average number of manifestations in all organs during life was calculated by summating these cumulative proportions. Poisson model parameters were used to calculate average time to the detection of consecutive VHL manifestations in each organ. Consecutive VHL-related kidney and retina manifestations during life occur linearly according to Poisson distribution model. The total number of VHL manifestations rises linearly, with an average of seven VHL-related lesions at age 60years. The incidence of consecutive VHL-related manifestations is constant during life in VHL mutation carriers. Our data is consistent with the notion that somatic inactivation of the remaining allele (Knudson's two-hit hypothesis) is the determining factor in developing new VHL-related manifestations

    საქართველოს სოციალისტური საბჭოთა რესპუბლიკის მუშათა და გლეხთა მთავრობის კანონთა და განკარგულებათა კრებული N16

    No full text
    Introduction: Recognising a tumour predisposition syndrome (TPS) in childhood cancer patients is of major clinical relevance. The presence of a TPS may be suggested by the type of tumour in the child. We present an overview of 23 childhood tumours that in themselves should be a reason to refer a child for genetic consultation. Methods: We performed a PubMed search to review the incidence of TPSs in children for 85 tumour types listed in the International Classification of Childhood Cancer third edition (ICCC-3). The results were discussed during a national consensus meeting with representative clinical geneticists from all six academic paediatric oncology centres in The Netherlands. A TPS incidence of 5% or more was considered a high probability and therefore in itself a reason for referral to a clinical geneticist. Results: The literature search resulted in data on the incidence of a TPS in 26 tumours. For 23/26 tumour types, a TPS incidence of 5% or higher was reported. In addition, during the consensus meeting the experts agreed that children with any carcinoma should always be referred for clinical genetic consultation as well, as it may point to a TPS. Conclusion: We present an overview of 23 paediatric tumours with a high probability of a TPS; this will facilitate paediatric oncologists to decide which patients should be referred for genetic consultation merely based on type of tumour. (C) 2017 Elsevier Ltd. All rights reserved

    Molecular Background of Colorectal Tumors From Patients With Lynch Syndrome Associated With Germline Variants in PMS2

    No full text
    Background & Aims: Germline variants in mismatch repair genes MLH1, MSH2 (EPCAM), MSH6, or PMS2 cause Lynch syndrome. Patients with these variants have an increased risk of developing colorectal cancers (CRCs) that differ from sporadic CRCs in genetic and histologic features. It has been a challenge to study CRCs associated with PMS2 variants (PMS2-associated CRCs) because these develop less frequently and in older patients than CRCs with variants in other mismatch repair genes. Methods: We analyzed 20 CRCs associated with germline variants in PMS2, 22 sporadic CRCs, 18 CRCs with germline variants in MSH2, and 24 CRCs from patients with germline variants in MLH1. Tumor tissue blocks were collected from Dutch pathology departments in 2017. After extraction of tumor DNA, we used a platform designed to detect approximately 3,000 somatic hotspot variants in 55 genes (including KRAS, APC, CTNNB1, and TP53). Somatic variant frequencies were compared using the Fisher exact test. Results: None of the PMS2-associated CRCs contained any somatic variants in the catenin-β1 gene (CTNNB1), which encodes β-catenin, whereas 14 of 24 MLH1-associated CRCs (58%) contained variants in CTNNB1. Half the PMS2-associated CRCs contained KRAS variants, but only 20% of these were in hotspots that encoded G12D or G13D. These hotspot variants occurred more frequently in CRCs associated with variants in MLH1 (37.5%; P =.44) and MSH2 (71.4%; P =.035) than in those associated with variants in PMS2. Conclusions: In a genetic analysis of 84 colorectal tumors, we found tumors from patients with PMS2-associated Lynch syndrome to be distinct from colorectal tumors associated with defects in other mismatch repair genes. This might account for differences in development and less frequent occurrence

    The effect of genotypes and parent of origin on cancer risk and age of cancer development in PMS2 mutation carriers

    No full text
    PURPOSE: Lynch syndrome (LS), a heritable disorder with an increased risk of primarily colorectal cancer (CRC) and endometrial cancer (EC), can be caused by mutations in the PMS2 gene. We wished to establish whether genotype and/or parent-of-origin effects (POE) explain (part of) the reported variability in severity of the phenotype. METHODS: European PMS2 mutation carriers (n = 381) were grouped and compared based on RNA expression and whether the mutation was inherited paternally or maternally. RESULTS: Mutation carriers with loss of RNA expression (group 1) had a significantly lower age at CRC diagnosis (51.1 years vs. 60.0 years, P = 0.035) and a lower age at EC diagnosis (55.8 years vs. 61.0 years, P = 0.2, nonsignificant) compared with group 2 (retention of RNA expression). Furthermore, group 1 showed slightly higher, but nonsignificant, hazard ratios (HRs) for both CRC (HR: 1.31, P = 0.38) and EC (HR: 1.22, P = 0.72). No evidence for a significant parent-of-origin effect was found for either CRC or EC. CONCLUSIONS: PMS2 mutation carriers with retention of RNA expression developed CRC 9 years later than those with loss of RNA expression. If confirmed, this finding would justify a delay in surveillance for these cases. Cancer risk was not influenced by a parent-of-origin effect.Genet Med advance online publication 25 June 2015Genetics in Medicine (2015); doi:10.1038/gim.2015.83

    Molecular Background of Colorectal Tumors From Patients With Lynch Syndrome Associated With Germline Variants in PMS2

    No full text
    Background & Aims: Germline variants in mismatch repair genes MLH1, MSH2 (EPCAM), MSH6, or PMS2 cause Lynch syndrome. Patients with these variants have an increased risk of developing colorectal cancers (CRCs) that differ from sporadic CRCs in genetic and histologic features. It has been a challenge to study CRCs associated with PMS2 variants (PMS2-associated CRCs) because these develop less frequently and in older patients than CRCs with variants in other mismatch repair genes. Methods: We analyzed 20 CRCs associated with germline variants in PMS2, 22 sporadic CRCs, 18 CRCs with germline variants in MSH2, and 24 CRCs from patients with germline variants in MLH1. Tumor tissue blocks were collected from Dutch pathology departments in 2017. After extraction of tumor DNA, we used a platform designed to detect approximately 3,000 somatic hotspot variants in 55 genes (including KRAS, APC, CTNNB1, and TP53). Somatic variant frequencies were compared using the Fisher exact test. Results: None of the PMS2-associated CRCs contained any somatic variants in the catenin-β1 gene (CTNNB1), which encodes β-catenin, whereas 14 of 24 MLH1-associated CRCs (58%) contained variants in CTNNB1. Half the PMS2-associated CRCs contained KRAS variants, but only 20% of these were in hotspots that encoded G12D or G13D. These hotspot variants occurred more frequently in CRCs associated with variants in MLH1 (37.5%; P =.44) and MSH2 (71.4%; P =.035) than in those associated with variants in PMS2. Conclusions: In a genetic analysis of 84 colorectal tumors, we found tumors from patients with PMS2-associated Lynch syndrome to be distinct from colorectal tumors associated with defects in other mismatch repair genes. This might account for differences in development and less frequent occurrence

    Nonfilling Carbon Coating of Porous Silicon Micrometer-Sized Particles for High-Performance Lithium Battery Anodes

    Get PDF
    Silicon is widely recognized as one of the most promising anode materials for lithium-ion batteries due to its 10 times higher specific capacity than graphite. Unfortunately, the large volume change of Si materials during their lithiation/delithiation process results in severe pulverization, loss of electrical contact, unstable solid–electrolyte interphase (SEI), and eventual capacity fading. Although there has been tremendous progress to overcome these issues through nanoscale materials design, improved volumetric capacity and reduced cost are still needed for practical application. To address these issues, we design a nonfilling carbon-coated porous silicon microparticle (nC-pSiMP). In this structure, porous silicon microparticles (pSiMPs) consist of many interconnected primary silicon nanoparticles; only the outer surface of the pSiMPs was coated with carbon, leaving the interior pore structures unfilled. Nonfilling carbon coating hinders electrolyte penetration into the nC-pSiMPs, minimizes the electrode–electrolyte contact area, and retains the internal pore space for Si expansion. SEI formation is mostly limited to the outside of the microparticles. As a result, the composite structure demonstrates excellent cycling stability with high reversible specific capacity (∼1500 mAh g<sup>–1</sup>, 1000 cycles) at the rate of C/4. The nC-pSiMPs contain accurate void space to accommodate Si expansion while not losing packing density, which allows for a high volumetric capacity (∼1000 mAh cm<sup>–3</sup>). The areal capacity can reach over 3 mAh cm<sup>–2</sup> with the mass loading 2.01 mg cm<sup>–2</sup>. Moreover, the production of nC-pSiMP is simple and scalable using a low-cost silicon monoxide microparticle starting material

    Comprehensive Mutation Analysis of PMS2 in a Large Cohort of Probands Suspected of Lynch Syndrome or Constitutional Mismatch Repair Deficiency (CMMRD) Syndrome

    No full text
    Monoallelic PMS2 germline mutations cause 5-15% of Lynch syndrome, a midlife cancer predisposition, whereas biallelic PMS2 mutations cause approximately 60% of constitutional MMR deficiency (CMMRD), a rare childhood cancer syndrome. Recently improved DNA and RNA-based strategies are applied to overcome problematic PMS2 mutation analysis due to the presence of pseudogenes and frequent gene conversion events. Here, we determined PMS2 mutation detection yield and mutation spectrum in a nationwide cohort of 396 probands. Furthermore, we studied concordance between tumor IHC/ MSI (immunohistochemistry/ microsatellite-instability) profile and mutation carrier state. Overall, we found 52 different pathogenic PMS2 variants explaining 121 Lynch syndrome and nine CMMRD patients. In vitro MMR assays suggested pathogenicity for three missense variants. Ninety-one PMS2 mutation carriers (70%) showed isolated loss of PMS2 in their tumors, for 31 (24%) no or inconclusive IHC was available, and eight carriers (6%) showed discordant IHC (presence of PMS2 or loss of both MLH1 and PMS2). Ten cases with isolated PMS2 loss (10%; 10/97) harbored MLH1 mutations. We confirmed that recently improved mutation analysis provides a high yield of PMS2 mutations in patients with isolated loss of PMS2 expression. Application of universal tumor pre-screening methods will however miss some PMS2 germline mutation carriers. This article is protected by copyright. All rights reserved
    corecore