33 research outputs found

    Lichens of six vernal pools in Acadia National Park, ME, USA

    Get PDF
    Whereas lichen-habitat relations have been well-documented globally, literature on lichens of vernal pools is scant. We surveyed six vernal pools at Acadia National Park on Mount Desert Island, Maine, USA for their lichen diversity. Sixty-seven species were identified, including seven species that are new reports for Acadia National Park: Fuscidea arboricola, Hypogymnia incurvoides, Lepraria finkii, Phaeographis inusta, Ropalospora viridis, Usnea flammea, and Violella fucata. Five species are considered uncommon or only locally common in New England: Everniastrum catawbiense, Hypogymnia krogiae, Pseudevernia cladonia, Usnea flammea, and Usnea merrillii. This work represents the first survey of lichens from vernal pools in Acadia National Park and strongly suggests that previous efforts at documenting species at the Park have underestimated its species diversity. More work should be conducted to determine whether a unique assemblage of lichens occurs in association with this unique habitat type

    Lichens of Callahan Mine, a copper and zinc-enriched Superfund site in Brooksville, Maine, U.S.A.

    Get PDF
    Metal-enriched habitats often harbor physiologically distinct biotas able to tolerate and accumulate toxic metals. Plants and lichens that accumulate metals have served as effective indicators of ecosystem pollution. Whereas the diversity of metal-tolerant lichens has been well documented globally, the literature of metal-tolerant lichen communities for eastern North America is limited. We examined the lichen flora of the Callahan Mine, a Cu-, Pb-, and Zn-enriched superfund site in Brooksville, Hancock County, Maine, U.S.A. Through collections along transects across metal-contaminated areas of the mine, we documented 76 species of lichens and related fungi. Fifty species were saxicolous, 26 were terricolous. Forty-three species were macrolichens, 31 were microlichens. Although no globally rare or declining species were encountered at the mine, two regionally rare or declining species, Stereocaulon tomentosum and Leptogium imbricatum, were found. The species found at the Callahan Mine were mostly ecological generalists frequenting disturbed habitats. Two extensively studied Cu-tolerant lichens, Acarospora smaragdula and Lecanora polytropa, and other known Cd-, Cu-, Pb-, and Zn-tolerant taxa, were found at the site

    Investigation of the importance of rock chemistry for saxicolous lichen communities of the New Idria serpentinite mass, San Benito County, California, USA

    Get PDF
    Although several lichen inventories exist for European ultramafic sites, only four surveys of serpentine lichens for North America have been published to date. Of those, only one has been conducted in California. We conducted a survey of saxicolous lichens from ultramafic rocks (including nephrite, partially serpentinized peridotite, and serpentinite) and non-ultramafic rocks (including silica-carbonate, shale, and sandstone) at the New Idria serpentinite mass, San Benito County, California. X-ray Fluorescence Analysis of the rocks from which the lichens were collected revealed significant elemental differences between the ultramafic and non-ultramafic rocks for 26 of the 32 major and trace elements analyzed. We identified a total of 119 species of lichenized and lichenicolous fungi; 60 species were restricted to ultramafic substrata, 19 to silica-carbonate, and 15 to shale and sandstone. Only 4 species were shared in common. A permutational multivariate analysis of variance (perMANOVA) test revealed significant differences in lichen assemblages between ultramafic and non-ultramafic rocks at the species level but not at the generic level, with species richness (alpha-diversity) significantly greater at the ultramafic sites. We suggest that, although differences in geochemistry clearly influence the lichen community composition, other factors, especially substratum age and the physical characteristics of the rock, are of equal, if not greater, importance. Of all the species collected, six, Buellia aethalea, B. ocellata, Caloplaca oblongula, Rhizocarpon saurinum, Thelocarpon laureri, and Trapelia obtegens, are reported new to California, along with an apparently previously undescribed Solenopsora sp. The rest of the species encountered are relatively frequent in the lichen flora of southern and central California, except Aspicilia praecrenata, a rare California endemic that we collected on both ultramafic and non-ultramafic rocks

    Lichens of Pine Hill, a Peridotite Outcrop in Eastern North America

    Get PDF
    Despite a large body of work on the serpentine-substrate effect on vascular plants, little work has been undertaken to describe lichen communities growing on serpentine soils derived from peridotite and other ultramafic rocks. Most such work has been conducted in Europe and western North America. Only one study to date has examined the lichen flora of an ultramafic outcrop in eastern North America. The current paper examines the lichen flora of a peridotite outcrop from Deer Isle, Hancock County, Maine, U.S.A. The lichen flora is presented along with relevant ecological and geochemical data. Sixty-three species were found, comprising 35 genera. Two species, Buellia ocellata and Cladonia symphycarpia, are new reports for New England. Fuscopannaria praetermissa, Psorula rufonigra, and Spilonema revertens are new reports for Maine. Twenty species including one genus, Lobaria, are new reports for ultramafic soils worldwide. Buellia ocellata, P. rufonigra, and S. revertens are reported from several localities on the outcrop. Soil analyses were conducted for pH, electrical conductivity, cation exchange capacity, heavy metals, and cations. Soil pH and cation and heavy metal concentrations are similar to those reported from west coast ultramafic soils suggesting that a similarly strong substrate effect may exist for species present on ultramafic soils in eastern North America

    Lichens of the Callahan Mine, a Copper- and Zinc-Enriched Superfund Site in Brooksville, Maine, U.S.A.

    Get PDF
    Metal-enriched habitats often harbor physiologically distinct biotas able to tolerate and accumulate toxic metals. Plants and lichens that accumulate metals have served as effective indicators of ecosystem pollution. Whereas the diversity of metal-tolerant lichens has been well documented globally, the literature of metal-tolerant lichen communities for eastern North America is limited. We examined the lichen flora of the Callahan Mine, a Cu-, Pb-, and Zn-enriched superfund site in Brooksville, Hancock County, Maine, U.S.A. Through collections along transects across metal-contaminated areas of the mine, we documented 76 species of lichens and related fungi. Fifty species were saxicolous, 26 were terricolous. Forty-three species were macrolichens, 31 were microlichens. Although no globally rare or declining species were encountered at the mine, two regionally rare or declining species, Stereocaulon tomentosum and Leptogium imbricatum, were found. The species found at the Callahan Mine were mostly ecological generalists frequenting disturbed habitats. Two extensively studied Cu-tolerant lichens, Acarospora smaragdula and Lecanora polytropa, and other known Cd-, Cu-, Pb-, and Zn-tolerant taxa, were found at the site

    Bryophytes of Adjacent Serpentine and Granite Outcrops on the Deer Isles, Maine, U.S.A

    Get PDF
    The serpentine-substrate effect is well documented for vascular plants, but the literature for bryophytes is limited. The majority of literature on bryophytes in extreme geoedaphic habitats focuses on the use of species as bioindicators of industrial pollution. Few attempts have been made to characterize bryophyte floras on serpentine soils derived from peridotite and other ultramafic rocks. This paper compares the bryophyte floras of both a peridotite and a granite outcrop from the Deer Isles, Hancock County, Maine, and examines tissue elemental concentrations for select species from both sites. Fifty-five species were found, 43 on serpentine, 26 on granite. Fourteen species were shared in common. Twelve species are reported for the first time from serpentine soils. Tissue analyses indicated significantly higher Mg, Ni, and Cr concentrations and significantly lower Ca∶Mg ratios for serpentine mosses compared to those from granite. Soil analyses demonstrated significant differences between the two substrates
    corecore