1,495 research outputs found
Recommended from our members
Extracellular matrix-modulated expression of human cell surface glycoproteins A42 and J143. Intrinsic and extrinsic signals determine antigenic phenotype.
Extracellular matrix (ECM)' plays an important regulatory role in cellular
growth, migration, and differentiation (1-4). Pathologic processes such as tumor
cell invasion and metastasis are also determined by cellular interactions with
ECM (5, 6). Biochemical studies have identified collagens, fibronectin, laminin,
proteoglycans, and several other proteins as major ECM components (1-3), and
have shown that ECM composition varies between different normal and tumor
tissues. The complexity and heterogeneity of ECM composition have hampered
the molecular analysis of ECM-cell interactions . However, a range of phenotypic
changes has been described for cultured cells after transfer from plastic surfaces
to substrates coated with native ECM (7, 8) or with purified ECM components;
ECM-induced phenotypic changes include enhanced substrate adhesiveness, cell
spreading and migration, changes in cell morphology and proliferative activity,
and expression of differentiated cellular functions (I-4). Some of these effects,
e.g., increased substrate adhesion, may result directly from the binding of
specialized cell surface structures to ECM molecules. Others are likely mediated
by an active cellular response triggered by the interaction of ECM with cell
surface receptors. Thus, ECM-derived signals (9) may activate a cascade of
molecular changes within the cell and on the cell surface that account for the
pleiotropic effects observed with ECM
RELATION OF CHROMOSOME 4 (LINKAGE GROUP VIII) TO MURINE LEUKEMIA VIRUS-ASSOCIATED ANTIGENS OF AKR MICE
Genes specifying or controlling the expression of GIX (cell surface), GCSA (cell surface), and gs (internal viral) antigens are located in chromosome 4 (linkage group [LG] VIII) of the AKR mouse. All three antigens may exhibit mendelian inheritance, mice being antigen positive or antigen negative, but each may also appear in leukemic cells of mice whose inherited genotype was antigen negative. The GIX-determining gene in LG VIII of AKR mice apparently is equivalent to Gv-1, which determines expression of the same antigen in 129 strain mice, but which in the latter strain is located in LG IX. As the estimated distance of Gv-1 from H-2 in 129 mice is considerable (37 units) further tests are now indicated to assess the possibility of pseudolinkage in this case. The Fv-1 locus, also located in LG VIII, influences the mouse's titer of MuLV, and might thereby be thought to regulate the GIX and gs phenotypes of AKR backcross segregants. But the data indicate a discrete LG VIII locus for GIX, since expression of this antigen is mendelian and independent of infectious virus titer. Since the GIX and GCSA phenotypes of AKR backcross segregants were invariably concordant, these two antigens must be specified or controlled by closely linked genes, and the latter also is presumably independent of virus titer. The question as to what extent expression of gs antigen in the segregants is secondary to virus production is undecided
Proteome Profiling of Breast Tumors by Gel Electrophoresis and Nanoscale Electrospray Ionization Mass Spectrometry
We have conducted proteome-wide analysis of fresh surgery specimens derived from breast cancer patients, using an approach that integrates size-based intact protein fractionation, nanoscale liquid separation of peptides, electrospray ion trap mass spectrometry, and bioinformatics. Through this approach, we have acquired a large amount of peptide fragmentation spectra from size-resolved fractions of the proteomes of several breast tumors, tissue peripheral to the tumor, and samples from patients undergoing noncancer surgery. Label-free quantitation was used to generate protein abundance maps for each proteome and perform comparative analyses. The mass spectrometry data revealed distinct qualitative and quantitative patterns distinguishing the tumors from healthy tissue as well as differences between metastatic and non-metastatic human breast cancers including many established and potential novel candidate protein biomarkers. Selected proteins were evaluated by Western blotting using tumors grouped according to histological grade, size, and receptor expression but differing in nodal status. Immunohistochemical analysis of a wide panel of breast tumors was conducted to assess expression in different types of breast cancers and the cellular distribution of the candidate proteins. These experiments provided further insights and an independent validation of the data obtained by mass spectrometry and revealed the potential of this approach for establishing multimodal markers for early metastasis, therapy outcomes, prognosis, and diagnosis in the future. Ā© 2008 American Chemical Society
Results of a randomized, double-blind phase II clinical trial of NY-ESO-1 vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in participants with high-risk resected melanoma.
BACKGROUND: To compare the clinical efficacy of New York Esophageal squamous cell carcinoma-1 (NY-ESO-1) vaccine with ISCOMATRIX adjuvant versus ISCOMATRIX alone in a randomized, double-blind phase II study in participants with fully resected melanoma at high risk of recurrence. METHODS: Participants with resected stage IIc, IIIb, IIIc and IV melanoma expressing NY-ESO-1 were randomized to treatment with three doses of NY-ESO-1/ISCOMATRIX or ISCOMATRIX adjuvant administered intramuscularly at 4-week intervals, followed by a further dose at 6 months. Primary endpoint was the proportion free of relapse at 18 months in the intention-to-treat (ITT) population and two per-protocol populations. Secondary endpoints included relapse-free survival (RFS) and overall survival (OS), safety and NY-ESO-1 immunity. RESULTS: The ITT population comprised 110 participants, with 56 randomized to NY-ESO-1/ISCOMATRIX and 54 to ISCOMATRIX alone. No significant toxicities were observed. There were no differences between the study arms in relapses at 18 months or for median time to relapse; 139 vs 176 days (p=0.296), or relapse rate, 27 (48.2%) vs 26 (48.1%) (HR 0.913; 95% CI 0.402 to 2.231), respectively. RFS and OS were similar between the study arms. Vaccine recipients developed strong positive antibody responses to NY-ESO-1 (pā¤0.0001) and NY-ESO-1-specific CD4+ and CD8+ responses. Biopsies following relapse did not demonstrate differences in NY-ESO-1 expression between the study populations although an exploratory study demonstrated reduced (NY-ESO-1)+/Human Leukocyte Antigen (HLA) class I+ double-positive cells in biopsies from vaccine recipients performed on relapse in 19 participants. CONCLUSIONS: The vaccine was well tolerated, however, despite inducing antigen-specific immunity, it did not affect survival endpoints. Immune escape through the downregulation of NY-ESO-1 and/or HLA class I molecules on tumor may have contributed to relapse
Shedding Light on Vampires: The Phylogeny of Vampyrellid Amoebae Revisited
With the advent of molecular phylogenetic techniques the polyphyly of naked filose amoebae has been proven. They are interspersed in several supergroups of eukaryotes and most of them already found their place within the tree of life. Although the āvampire amoebaeā have attracted interest since the middle of the 19th century, the phylogenetic position and even the monophyly of this traditional group are still uncertain. In this study clonal co-cultures of eight algivorous vampyrellid amoebae and the respective food algae were established. Culture material was characterized morphologically and a molecular phylogeny was inferred using SSU rDNA sequence comparisons. We found that the limnetic, algivorous vampyrellid amoebae investigated in this study belong to a major clade within the Endomyxa Cavalier-Smith, 2002 (Cercozoa), grouping together with a few soil-dwelling taxa. They split into two robust clades, one containing species of the genus Vampyrella Cienkowski, 1865, the other containing the genus Leptophrys Hertwig & Lesser, 1874, together with terrestrial members. Supported by morphological data these clades are designated as the two families Vampyrellidae Zopf, 1885, and Leptophryidae fam. nov. Furthermore the order Vampyrellida West, 1901 was revised and now corresponds to the major vampyrellid clade within the Endomyxa, comprising the Vampyrellidae and Leptophryidae as well as several environmental sequences. In the light of the presented phylogenetic analyses morphological and ecological aspects, the feeding strategy and nutritional specialization within the vampyrellid amoebae are discussed
Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen (HLA)-A2-binding peptide epitopes
A growing number of human tumor antigens have been described that can be recognized by cytotoxic T lymphocytes (CTLs) in a major histocompatibility complex (MHC) class I-restricted fashion. Serological screening of cDNA expression libraries, SEREX, has recently been shown to provide another route for defining immunogenic human tumor antigens. The detection of antibody responses against known CTL-defined tumor antigens, e.g., MAGE-1 and tyrosinase, raised the question whether antibody and CTL responses against a defined tumor antigen can occur simultaneously in a single patient. In this paper, we report on a melanoma patient with a high-titer antibody response against the "cancer-testis" antigen NY-ESO-1. Concurrently, a strong MHC class I-restricted CTL reactivity against the autologous NY-ESO-1-positive tumor cell line was found. A stable CTL line (NW38-IVS-1) was established from this patient that reacted with autologous melanoma cells and with allogeneic human histocompatibility leukocyte antigen (HLA)-A2(-), NY-ESO-1-positive, but not NY-ESO-1-negative, melanoma cells. Screening of NY-ESO-1 transfectants with NW38-IVS-1 revealed NY-ESO-1 as the relevant CTL target presented by HLA-A2. Computer calculation identified 26 peptides with HLA-A2-binding motifs encoded by NY-ESO-1. Of these, three peptides were efficiently recognized by NW38-IVS-1. Thus, we show that antigen-specific humoral and cellular immune responses against human tumor antigens may occur simultaneously. In addition, our analysis provides a general strategy for identifying the CTL-recognizing peptides of tumor antigens initially defined by autologous antibody
- ā¦