28 research outputs found

    First πK\pi K atom lifetime and πK\pi K scattering length measurements

    Get PDF
    The results of a search for hydrogen-like atoms consisting of πK±\pi^{\mp}K^{\pm} mesons are presented. Evidence for πK\pi K atom production by 24 GeV/c protons from CERN PS interacting with a nickel target has been seen in terms of characteristic πK\pi K pairs from their breakup in the same target (178±49178 \pm 49) and from Coulomb final state interaction (653±42653 \pm 42). Using these results the analysis yields a first value for the πK\pi K atom lifetime of τ=(2.51.8+3.0)\tau=(2.5_{-1.8}^{+3.0}) fs and a first model-independent measurement of the S-wave isospin-odd πK\pi K scattering length a0=13a1/2a3/2=(0.110.04+0.09)Mπ1\left|a_0^-\right|=\frac{1}{3}\left|a_{1/2}-a_{3/2}\right|= \left(0.11_{-0.04}^{+0.09} \right)M_{\pi}^{-1} (aIa_I for isospin II).Comment: 14 pages, 8 figure

    Determination of ππ\pi\pi scattering lengths from measurement of π+π\pi^+\pi^- atom lifetime

    Get PDF
    The DIRAC experiment at CERN has achieved a sizeable production of π+π\pi^+\pi^- atoms and has significantly improved the precision on its lifetime determination. From a sample of 21227 atomic pairs, a 4% measurement of the S-wave ππ\pi\pi scattering length difference a0a2=(.0.25330.0078+0.0080stat.0.0073+0.0078syst)Mπ+1|a_0-a_2| = (.0.2533^{+0.0080}_{-0.0078}|_\mathrm{stat}.{}^{+0.0078}_{-0.0073}|_\mathrm{syst})M_{\pi^+}^{-1} has been attained, providing an important test of Chiral Perturbation Theory.Comment: 6 pages, 6 figure

    DIRAC Experiment and Test of Low-Energy QCD

    Get PDF
    The low-energy QCD predictions to be tested by the DIRAC experiment are revised. The experimental method, the setup characteristics and capabilities, along with first experimental results are reported. Preliminary analysis shows good detector performance: alignment error via Λ\Lambda mass measurement mΛ=1115.6MeV/c2m_\Lambda = 1115.6 MeV/c^2 with σ=0.92MeV/c2\sigma = 0.92 MeV/c^2, pπp \pi^- relative momentum resolution σQ2.7MeV/c\sigma_Q \approx 2.7 MeV/c, and evidence for $\pi^

    Investigation of K+KK^+K^- pairs in the effective mass region near 2mK2m_K

    Full text link
    The DIRAC experiment at CERN investigated in the reaction p(24 GeV/c)+Ni\rm{p}(24~\rm{GeV}/c) + Ni the particle pairs K+K,π+πK^+K^-, \pi^+ \pi^- and ppˉp \bar{p} with relative momentum QQ in the pair system less than 100 MeV/c. Because of background influence studies, DIRAC explored three subsamples of K+KK^+K^- pairs, obtained by subtracting -- using time-of-flight (TOF) technique -- background from initial QQ distributions with K+KK^+K^- sample fractions more than 70\%, 50\% and 30\%. The corresponding pair distributions in QQ and in its longitudinal projection QLQ_L were analyzed first in a Coulomb model, which takes into account only Coulomb final state interaction (FSI) and assuming point-like pair production. This Coulomb model analysis leads to a K+KK^+K^- yield increase of about four at QL=0.5Q_L=0.5 MeV/c compared to 100 MeV/c. In order to study contributions from strong interaction, a second more sophisticated model was applied, considering besides Coulomb FSI also strong FSI via the resonances f0(980)f_0(980) and a0(980)a_0(980) and a variable distance rr^* between the produced KK mesons. This analysis was based on three different parameter sets for the pair production. For the 70\% subsample and with best parameters, 3680±3703680\pm 370 K+KK^+K^- pairs was found to be compared to 3900±4103900\pm 410 K+KK^+K^- extracted by means of the Coulomb model. Knowing the efficiency of the TOF cut for background suppression, the total number of detected K+KK^+K^- pairs was evaluated to be around 40000±10%40000\pm 10\%, which agrees with the result from the 30\% subsample. The K+KK^+K^- pair number in the 50\% subsample differs from the two other values by about three standard deviations, confirming -- as discussed in the paper -- that experimental data in this subsample is less reliable

    Evidence for πK\pi K-atoms with DIRAC

    Get PDF
    We present evidence for the first observation of electromagnetically bound π±K\pi^\pm K^\mp-pairs (πK\pi K-atoms) with the DIRAC experiment at the CERN-PS. The πK\pi K-atoms are produced by the 24 GeV/c proton beam in a thin Pt-target and the π±\pi^\pm and KK^\mp-mesons from the atom dissociation are analyzed in a two-arm magnetic spectrometer. The observed enhancement at low relative momentum corresponds to the production of 173 ±\pm 54 πK\pi K-atoms. The mean life of πK\pi K-atoms is related to the s-wave πK\pi K-scattering lengths, the measurement of which is the goal of the experiment. From these first data we derive a lower limit for the mean life of 0.8 fs at 90% confidence level.Comment: 15 pages, 9 figure

    DIRAC: A High Resolution Spectrometer for Pionium Detection

    Full text link
    The DIRAC spectrometer has been commissioned at CERN with the aim of detecting π+π\pi^+ \pi^- atoms produced by a 24 GeV/cc high intensity proton beam in thin foil targets. A challenging apparatus is required to cope with the high interaction rates involved, the triggering of pion pairs with very low relative momentum, and the measurement of the latter with resolution around 0.6 MeV/cc. The general characteristics of the apparatus are explained and each part is described in some detail. The main features of the trigger system, data-acquisition, monitoring and setup performances are also given.Comment: 49 pages, 37 figures. Figures 1, 2, 5 and 28 are removed because of size limitations imposed by hep-ex. They don't offer essential information. Latex class file 'elsart.cls' also provide

    First measurement of the π+π\pi^+\pi^- atom lifetime

    Get PDF
    The goal of the DIRAC experiment at CERN (PS212) is to measure the π+π\pi^+\pi^- atom lifetime with 10% precision. Such a measurement would yield a precision of 5% on the value of the SS-wave ππ\pi\pi scattering lengths combination a0a2|a_0-a_2|. Based on part of the collected data we present a first result on the lifetime, τ=[2.910.62+0.49]×1015\tau=[2.91 ^{+0.49}_{-0.62}]\times 10^{-15} s, and discuss the major systematic errors. This lifetime corresponds to a0a2=0.2640.020+0.033mπ1|a_0-a_2|=0.264 ^{+0.033}_{-0.020} m_{\pi}^{-1}.Comment: 18 pages, 6 figure

    Detection of π+π\pi^+\pi^-atoms with the DIRAC spectrometer at CERN

    Full text link
    The goal of the DIRAC experiment at CERN is to measure with high precision the lifetime of the π+π\pi^+\pi^- atom (A2πA_{2\pi}), which is of order 3×10153\times10^{-15} s, and thus to determine the s-wave ππ\pi\pi-scattering lengths difference a0a2|a_{0}-a_{2}|. A2πA_{2\pi} atoms are detected through the characteristic features of π+π\pi^+\pi^- pairs from the atom break-up (ionization) in the target. We report on a first high statistics atomic data sample obtained from p Ni interactions at 24 GeV/cc proton momentum and present the methods to separate the signal from the background.Comment: 19 pages, 12 figures, 1 tabl
    corecore