4 research outputs found

    Mapping co-ancestry connections between the genome of a Medieval individual and modern Europeans

    Get PDF
    Historical genetic links among similar populations can be difficult to establish. Identity by descent (IBD) analyses find genomic blocks that represent direct genealogical relationships among individuals. However, this method has rarely been applied to ancient genomes because IBD stretches are progressively fragmented by recombination and thus not recognizable after few tens of generations. To explore such genealogical relationships, we estimated long IBD blocks among modern Europeans, generating networks to uncover the genetic structures. We found that Basques, Sardinians, Icelanders and Orcadians form, each of them, highly intraconnected sub-clusters in a European network, indicating dense genealogical links within small, isolated populations. We also exposed individual genealogical links -such as the connection between one Basque and one Icelandic individual- that cannot be uncovered with other, widely used population genetics methods such as PCA or ADMIXTURE. Moreover, using ancient DNA technology we sequenced a Late Medieval individual (Barcelona, Spain) to high genomic coverage and identified IBD blocks shared between her and modern Europeans. The Medieval IBD blocks are statistically overrepresented only in modern Spaniards, which is the geographically closest population. This approach can be used to produce a fine-scale reflection of shared ancestry across different populations of the world, offering a direct genetic link from the past to the present.This research was supported by a PGC2018-0955931-B-100 grant (MCIU/AEI/FEDER, UE) of Spain to C.L.-F., by a grant from MINECO (FIS2016-77447-R) to S.C. and by 2017SGR 00622 grant from Generalitat de Catalunya’s Agency (AGAUR) to S.C. Sequences from the Medieval genome are deposited at the European Nucleotide Archives under accession number PRJEB33120

    Health outcomes of non-nutritive sweeteners: analysis of the research landscape

    No full text

    Unlocking the origins and biology of domestic animals using ancient DNA and paleogenomics

    No full text
    corecore