76 research outputs found

    Assessing the Geomechanical Responses of Storage System in CO2 Geological Storage: an Introduction of Research Program in the National Institute for Advanced Industrial Science and Technology (AIST)

    Get PDF
    AbstractThis paper overviews studies being conducted in the National Institute for Advanced Industrial Science and Technology (AIST) on the fluid-rock mechanical interaction associated with CO2 geological storage (CGS). Our studies include the extension of TOUGH-FLAC simulator developed in LBNL to CGS under the geologic conditions of Japan where the young sedimentary basins underlain by so-called “soft rocks” are postulated to be the place of CO2 storage. Experimental studies and basic studies on the petrophysical properties of “soft rocks” are also the important parts of the whole research program to elucidate their mechanical behaviors under the conditions in and around a CO2 reservoir and its caprock

    Ultra-high-purity iron is a novel and very compatible biomaterial

    Get PDF
    Metals and alloys are used widely in bone prosthetic materials, stents and dental tissue reconstructions. The most common materials are stainless steels and cobalt-chromium-nickel and titanium alloys. These alloys can be easily deformed but are hard to break. However, their affinity for cells and tissues is very low. In addition, they can sometimes provoke unexpected metal allergies. Iron is an abundant trace element essential for humans. However, excess amounts in particular of Fe2+ ions are toxic. We previously succeeded in obtaining 99.9996% ultra-high-purity iron (ABIKO iron). The chemical properties of ABIKO iron are completely different from that of conventional pure iron. For example, the reaction rate in hydrochloric acid is very slow and there is barely any corrosion. Here, we found that, in the absence of any type of coating, mammalian cells could easily attach to, and normally proliferate and differentiate on, ABIKO iron. On the other hand, cell densities and proliferation rate of the surfaces of plates made from Co–Cr–Mo or Ti–6Al–4V were significantly reduced. In addition, several stress and iron response genes, HSP70, SOD1, ATM and IRP2 did not change in the cells on ABIKO iron, while these genes were induced with exogenous application of FeSO4. Cells also secreted and fastened some organics on ABIKO iron. In vitro collagen binding assay showed that ABIKO iron binds higher amount of collagens. These findings highlight ABIKO iron as a novel biocompatible prosthetic material

    Elastic Wave Property of Concrete Decomposed by Steam Pressure Cracking Agent

    Get PDF
    A steam pressure cracking (SPC) agent is a method that can dismantle concrete safely and quickly. In previous studies, the authors showed that the direction of the crack could be controlled by the tensile stress at the induction holes and not by the compressive stress at the SPC hole. We demonstrate that the compression elastic wave changes to a tensile wave when the wave is reflected at the free surface of the induction hole. We also examined the properties of the concrete by developing an elastic wave measuring system that is difficult to break down even in high-temperature, wet, and radiation environment. The elastic wave velocity change in the four concrete types was less than 4%. It was found that the standard deviation value, σ, changed four times. Therefore, it is possible to determine the deterioration of the internal structure of concrete using the standard deviation value σ, which indicates the dispersion of the elastic wave velocity

    Controlled Cracking of Large Size Concrete Structures by a Steam Pressure Cracking Agent

    Get PDF
    The dismantling of large concrete structures causes environmental pollution due to the dispersion of polluted micro-particles. The purpose of this study is to develop an environmentally friendly demolition method. Steam pressure cracking (SPC) is a method that can safely and quickly separate concrete because there is less vibration compared to the explosion method. To date, the authors have shown that the direction of cracking in a small sample can be controlled by an induction hole. The principle of control is that the elastic wave of compression stress generated from the SPC reaction changes to a tensile elastic wave at the induction hole, and a crack is initiated. In this study, it was shown that the direction of crack propagation can be controlled by using induction holes in large concrete structures that are 1m on each side. Further, in the SPC method, the large amount of concrete powder generated by the explosion method is not produced, and there is no risk of secondary contamination by fine concrete powder. It was also possible to separate small pieces from the end face of the large concrete by SPC and induction holes. The area over which the crack propagated depends on the energy generated from the SPC agent, and the relationship was linear. By applying an SPC agent to dismantling large concrete structures, we can achieve controlled cracking safely and quickly without any environmental pollution.&nbsp

    Elastic Wave Property of Concrete Decomposed by Steam Pressure Cracking Agent

    Get PDF
    A steam pressure cracking (SPC) agent is a method that can dismantle concrete safely and quickly. In previous studies, the authors showed that the direction of the crack could be controlled by the tensile stress at the induction holes and not by the compressive stress at the SPC hole. We demonstrate that the compression elastic wave changes to a tensile wave when the wave is reflected at the free surface of the induction hole. We also examined the properties of the concrete by developing an elastic wave measuring system that is difficult to break down even in high-temperature, wet, and radiation environment. The elastic wave velocity change in the four concrete types was less than 4%. It was found that the standard deviation value, σ, changed four times. Therefore, it is possible to determine the deterioration of the internal structure of concrete using the standard deviation value σ, which indicates the dispersion of the elastic wave velocity
    corecore