1,487 research outputs found

    CP violation in unpolarized e^+ e^- to charginos at one loop level

    Get PDF
    We study CP violation in e^+ e^- to \tilde\chi_i^+\tilde\chi_j^- in the framework of the MSSM. Though the cross section of this process is CP-even at the tree level even for polarized electron-positron beams, we show that it contains a CP-odd part at the one loop order and there are CP-odd observables that can in principle be measured even using unpolarized electron-positron beams. The relevant diagram calculations are briefly discussed and the results of selected (box) diagram computations are shown.Comment: similar to Phys. Rev. D version, but corrected figs. 4, 5, 6 (factor four

    Diquark and light four-quark states

    Full text link
    Four-quark states with different internal clusters are discussed within the constituent quark model. It is pointed out that the diquark concept is not meaningful in the construction of a tetraquark interpolating current in the QCD sum rule approach, and hence existing sum-rule studies of four-quark states are incomplete. An updated QCD sum-rule determination of the properties of diquark clusters is then used as input for the constituent quark model to obtain the masses of light 0++0^{++} tetraquark states ({\it i.e.\} a bound state of two diquark clusters). The results support the identification of σ(600)\sigma(600), f0(980)f_0(980) and a0(980)a_0(980) as the 0++0^{++} light tetraquark states, and seem to be inconsistent with the tetraquark state interpretation of the new BES observations of the near-threshold ppˉp\bar p enhancements, X(1835) and X(1812), with the possible exception that X(1576) may be an "exotic" first orbital excitation of f0(980)f_0(980) or a0(980)a_0(980).Comment: 7 pages, 4 eps figures, RevTex, two figures and some references added, published version in PR

    Trialogue on the number of fundamental constants

    Get PDF
    This paper consists of three separate articles on the number of fundamental dimensionful constants in physics. We started our debate in summer 1992 on the terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the subject to find that our views still diverged and decided to explain our current positions. LBO develops the traditional approach with three constants, GV argues in favor of at most two (within superstring theory), while MJD advocates zero.Comment: Version appearing in JHEP; 31 pages late

    Final-State-Interaction Simulation of T-Violation in the Top-Quark Semileptonic Decay

    Full text link
    The standard electroweak final-state interaction induces a false T-odd correlation in the top-quark semileptonic decay. The correlation parameter is calculated in the standard model and found to be considerably larger than those that could be produced by genuine T-violation effects in a large class of theoretical models.Comment: 14 pages, 1 diagram (not included

    Macroscopic Strings and "Quirks" at Colliders

    Full text link
    We consider extensions of the standard model containing additional heavy particles ("quirks") charged under a new unbroken non-abelian gauge group as well as the standard model. We assume that the quirk mass m is in the phenomenologically interesting range 100 GeV--TeV, and that the new gauge group gets strong at a scale Lambda < m. In this case breaking of strings is exponentially suppressed, and quirk production results in strings that are long compared to 1/Lambda. The existence of these long stable strings leads to highly exotic events at colliders. For 100 eV < Lambda < keV the strings are macroscopic, giving rise to events with two separated quirk tracks with measurable curvature toward each other due to the string interaction. For keV < Lambda < MeV the typical strings are mesoscopic: too small to resolve in the detector, but large compared to atomic scales. In this case, the bound state appears as a single particle, but its mass is the invariant mass of a quirk pair, which has an event-by-event distribution. For MeV < Lambda < m the strings are microscopic, and the quirks annihilate promptly within the detector. For colored quirks, this can lead to hadronic fireball events with 10^3 hadrons with energy of order GeV emitted in conjunction with hard decay products from the final annihilation.Comment: Added discussion of photon-jet decay, fixed minor typo

    SU(2) Kinetic Mixing Terms and Spontaneous Symmetry Breaking

    Full text link
    The non-abelian generalization of the Holdom model --{\it i.e.} a theory with two gauge fields coupled to the kinetic mixing term gtr(Fμν(A)Fμν(B))g {tr}(F_{\mu \nu} (A) F_{\mu \nu} (B))-- is considered. Contrarily to the abelian case, the group structure G×GG\times G is explicitly broken to GG. For SU(2) this fact implies that the residual gauge symmetry as well as the Lorentz symmetry is spontaneusly broken. We show that this mechanism provides of masses for the involved particles. Also, the model presents instanton solutions with a redefined coupling constant.Comment: 9pp. typos and clarifications are adde

    Neutrino statistics and big bang nucleosynthesis

    Full text link
    Neutrinos may possibly violate the spin-statistics theorem, and hence obey Bose statistics or mixed statistics despite having spin half. We find the generalized equilibrium distribution function of neutrinos which depends on a single fermi-bose parameter, \kappa, and interpolates continuously between the bosonic and fermionic distributions when \kappa changes from -1 to +1. We consider modification of the Big Bang Nucleosynthesis (BBN) in the presence of bosonic or partly bosonic neutrinos. For pure bosonic neutrinos the abundances change (in comparison with the usual Fermi-Dirac case) by -3.2% for 4He (which is equivalent to a decrease of the effective number of neutrinos by \Delta N_\nu = - 0.6), +2.6% for 2H and -7% for 7Li. These changes provide a better fit to the BBN data. Future BBN studies will be able to constrain the fermi-bose parameter to \kappa > 0.5, if no deviation from fermionic nature of neutrinos is found. We also evaluate the sensitivity of future CMB and LSS observations to the fermi-bose parameter.Comment: 11 pages, 3 figures, matches version in JCAP, discussion and references extended slightl

    Is it still worth searching for lepton flavor violation in rare kaon decays?

    Full text link
    Prospective searches for lepton flavor violation (LFV) in rare kaon decays at the existing and future intermediate-energy accelerators are considered. The proposed studies are complementary to LFV searches in muon-decay experiments and offer a unique opportunity to probe models with approximately conserved fermion-generation quantum number with sensitivity superior to that in other processes. Consequently, new searches for LFV in kaon decays are an important and independent part of the general program of searches for lepton flavor violation in the final states with charged leptons.Comment: 30 pages, 10 figures. An extended version of the talk given at the Chicago Flavor Seminar, February 27, 2004. In the new version some misprints were corrected and some new data for LFV-processes were added. The main content of the paper was not changed. The paper is published in Yad. Fiz. 68, 1272 (2005

    New Experimental limit on Optical Photon Coupling to Neutral, Scalar Bosons

    Full text link
    We report on the first results of a sensitive search for scalar coupling of photons to a light neutral boson in the mass range of approximately 1.0 milli-electron volts and coupling strength greater than 106^-6 GeV1^-1 using optical photons. This was a photon regeneration experiment using the "light shining through a wall" technique in which laser light was passed through a strong magnetic field upstream of an optical beam dump; regenerated laser light was then searched for downstream of a second magnetic field region optically shielded from the former. Our results show no evidence for scalar coupling in this region of parameter space.Comment: pdf-file, 10 pages, 4 figures, submitted to Physical Review Letter
    corecore