147 research outputs found
Vortex-antivortex wavefunction of a degenerate quantum gas
A mechanism of a pinning of the quantized matter wave vortices by optical
vortices in a specially arranged optical dipole traps is discussed. The
vortex-antivortex optical arrays of rectangular symmetry are shown to transfer
angular orbital momentum and form the "antiferromagnet"-like matter waves. The
separable Hamiltonian for matter waves in pancake trapping geometry is proposed
and 3D-wavefunction is factorized in a product of wavefunctions of the 1D
harmonic oscillator and 2D vortex-antivortex quantum state. The 2D
wavefunction's phase gradient field associated via Madelung transform with the
field of classical velocities forms labyrinth-like structure. The macroscopic
quantum state composed of periodically spaced counter-rotating BEC superfluid
vortices has zero angular momentum and nonzero rotational energy.Comment: 11 pages, 5 figure
Fabrication of metastable crystalline nanocomposites by flash annealing of Cu47.5Zr47.5Al5 metallic glass using joule heating
Flash Joule-heating was applied to the Cu47.5Zr47.5Al5 metallic glass for designing fully crystalline metastable nanocomposites consisting of the metastable B2 CuZr and low-temperature equilibrium Cu10Zr7 phases. The onset of crystallization was in situ controlled by monitoring resistivity changes in the samples. The effect of heating rate and annealing time on the volume fraction of the crystalline phases and mechanical properties of the nanocomposites was studied in detail. Particularly, an increase of the heating rate and a decrease of the annealing time lead to a lower number of equilibrium Cu10Zr7 precipitates and an increase of tensile ductility. Tailoring of these non-equilibrium microstructures and mechanical properties may not be possible unless one starts with a fully glassy material that opens new perspectives for designing metastable nanomaterials with unique physical properties. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.EC 111/26-1, MA 3333/13-105K2012European Research Council, ERC: ERC-2013-ADG-340025Funding: This research was funded by the German Federal Ministry of Education and Science BMBF, grant number 05K2012, the German Science Foundation under the Leibniz Program, grant numbers EC 111/26-1 and MA 3333/13-1, and the European Research Council (ERC) under the ERC Advanced Grant INTELHYB, grant number ERC-2013-ADG-340025
Recommended from our members
Fabrication of metastable crystalline nanocomposites by flash annealing of Cu47.5Zr47.5Al5 metallic glass using joule heating
Flash Joule-heating was applied to the Cu47.5Zr47.5Al5 metallic glass for designing fully crystalline metastable nanocomposites consisting of the metastable B2 CuZr and low-temperature equilibrium Cu10Zr7 phases. The onset of crystallization was in situ controlled by monitoring resistivity changes in the samples. The effect of heating rate and annealing time on the volume fraction of the crystalline phases and mechanical properties of the nanocomposites was studied in detail. Particularly, an increase of the heating rate and a decrease of the annealing time lead to a lower number of equilibrium Cu10Zr7 precipitates and an increase of tensile ductility. Tailoring of these non-equilibrium microstructures and mechanical properties may not be possible unless one starts with a fully glassy material that opens new perspectives for designing metastable nanomaterials with unique physical properties
- …