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Abstract: Flash Joule-heating was applied to the Cu47.5Zr47.5Al5 metallic glass for designing fully
crystalline metastable nanocomposites consisting of the metastable B2 CuZr and low-temperature
equilibrium Cu10Zr7 phases. The onset of crystallization was in situ controlled by monitoring
resistivity changes in the samples. The effect of heating rate and annealing time on the volume
fraction of the crystalline phases and mechanical properties of the nanocomposites was studied in
detail. Particularly, an increase of the heating rate and a decrease of the annealing time lead to a lower
number of equilibrium Cu10Zr7 precipitates and an increase of tensile ductility. Tailoring of these
non-equilibrium microstructures and mechanical properties may not be possible unless one starts
with a fully glassy material that opens new perspectives for designing metastable nanomaterials with
unique physical properties.
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1. Introduction

For several decades, composite materials [1–6] and materials with composite microstructures [7–9]
have been the focus of research and industry as they provide a whole range of complementary
physical properties determined by matrix and non-matrix counterparts. In many cases, the properties
of composite materials even exceed the properties of their constituent materials. Some examples
include anomalously low elastic modulus in Fe-Mg microcomposites [10], outstanding strength in
metal-polymer nanocomposites [5,11–13] fabricated from nanoporous metals [14–19], and significantly
enhanced plastic deformability in metallic glass composites [20,21]. The design of non-equilibrium
composite microstructures in as-cast nanostructured titanium alloys [22–26] leads to the high strength
and good plastic deformability required for structural and biomedical applications [27,28]. One of the
promising processing methods for the design of advanced materials with non-equilibrium composite
microstructures is the annealing of metallic glasses [21,29].

Metallic glasses are metallic solids with disordered, liquid-like atomic structures.
Thermodynamically, metallic glasses are in a high-energy (metastable) state regardless of their
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fabrication method and, consequently, they can be easily transformed into more stable crystalline states
by lowering their energy. Among the exciting applications making use of annealing of metallic glasses
is the development of nanostructured FINEMET material [8] with superior magnetic properties. Some
further examples of composite-structured materials based on metallic glasses can be found in [30–32].
It is important to note that, usually, phase transformations in metallic glasses occur rapidly and, thus,
rapid annealing methods have to be used in order to control these transformations.

Recently, flash-annealing techniques based on Joule [20], inductive [33,34], and electromagnetic
radiation [35] heating were reported as tools for controllable tuning of the microstructure in metallic glass
ribbons and bulk samples, respectively, aiming to improve their mechanical properties. Both techniques
were applied to CuZr-based metallic glasses, which were partially devitrified into the metastable B2
CuZr structure to form glass-matrix composites. The thus obtained homogeneously distributed B2
CuZr crystals in the glassy matrix result in a significant improvement of the mechanical properties of
the CuZr-based metallic glasses and even allow for tailoring the tensile ductility [20]. Furthermore, it
has been shown that the strength of fully crystalline composites containing ultrafine-grained crystalline
phases even exceeds that of the parent glass [20].

In this study, we focus on the effect of heating rate and time on the formation of stable and
metastable crystalline phases in the Cu47.5Zr47.5Al5 metallic glass upon flash annealing and the
mechanical properties of the crystalline nano- and microcomposites obtained.

2. Materials and Methods

Samples were prepared under high purity argon atmosphere in two steps. First, Cu47.5Zr47.5Al5
(at. %) ingots were produced from Cu (99.99%), Zr (99.98%), and Al (99.99%), by arc-melting. In the
second step, glassy ribbons were prepared from the ingots by melt-spinning. The metallic glass ribbons
were annealed using an in-house designed set-up. The samples were characterized by X-ray diffraction
(XRD, Stoe, STADI P with Mo-Kα1 radiation, Darmstadt, Germany) and scanning electron microscopy
(SEM, Zeiss, Leo Gemini 1530, Oberkochen, Germany). Phase identification was done by means of
the X’Pert High Score Plus (Malvern Panalytical, Malvern, UK) software, whereas SEM images were
analysed using ImageJ (open source) software. Mechanical testing was performed with an Instron
8562 machine (Instron, Norwood, MA, United States) at a strain rate of 10−4 s−1 at room temperature.
The strain was measured by a laser extensometer (Fiedler Optoelektronik, Lützen, Germany). The
gauge length of 5 mm was selected in the middle region of a ribbon sample.

3. Results and Discussion

Cu47.5Zr47.5Al5 metallic glass can transform to a lower energy state through several devitrification
paths. These are schematically illustrated in a continuous heating transformation (CHT) diagram in
Figure 1.

Fast heating to temperatures above the crystallization temperature, Tx, as depicted by line 1, leads
to nucleation of the metastable B2 CuZr phase in the metallic glass matrix. Fast cooling is required to
avoid decomposition of B2 CuZr into the thermodynamically favourable low temperature eutectic
phases (LT-EPs) Cu10Zr7 and CuZr2, and thus to stabilize B2 CuZr at room temperature. The ductile
B2 CuZr crystals hinder localization of deformation in the glassy phase leading to tensile ductility of
the glass-matrix composites [20]. Moving the cooling curve closer to the nose of the stability regime of
the LT-EPs leads to a higher solid fraction of B2 CuZr, ultimately leading to complete suppression of
the glassy phase. Heating along line 2 and cooling along lines a and b results in devitrification of the
metallic glass into B2 CuZr with subsequent decomposition of B2 CuZr into the LT-EPs. As it has been
shown in earlier works [20,33], the mechanical properties of the composites obtained depend strongly
on the constituent phases.
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Figure 1. Schematic continuous heating transformation (CHT) diagram of the Cu47.5Zr47.5Al5 metallic
glass based on [20].

In this work, we use the Joule heating for annealing of the Cu47.5Zr47.5Al5 metallic glass. Hereby,
an electrical current is applied to a sample for a short time from several milliseconds to a few seconds,
as described elsewhere [20]. The fast heating is favoured by the rather high resistivity of metallic
glasses [36,37]. Since crystalline phases possess a higher conductivity compared to their glassy
counterparts, devitrification of the glassy phase leads to a remarkable resistivity drop, which allows
one to quite sensitively monitor crystallization processes [20]. The distribution of the applied current
density versus the onset of the resistivity drop for the Cu47.5Zr47.5Al5 metallic glass can be found in
our previous study [20]. The relatively short heating time during the Joule heating allows the adiabatic
conditions to be nearly fulfilled and, therefore, the current density is proportional to the heating rate,
as has been proven by measurement of heating rates using a thermocouple. The heating rates given in
Table 1 have been estimated based on the crystallization temperature of the Cu47.5Zr47.5Al5 metallic
glass (about 695 K at about 0.7 K s−1 heating rate) [38], and the measured time-to-crystallisation
indicated by the resistivity drop. Particularly, the heating rate corresponding to the highest applied
current density (namely, 59 ± 5 MA m−2) is ≥830 K s−1.

Table 1. Microstructural characteristics of the Cu47.5Zr47.5Al5 metallic glass samples rapidly annealed
until the resistivity drop.

Sample
Current
Density

(MA m−2)

Estimated
Heating

Rate (K s−1)

Annealing
Time

Volume
Fraction of B2
CuZr (vol.%)

Volume
Fraction

of Cu10Zr7
(vol.%)

Number
of Cu10Zr7
Particles
(mm−2)

Size of
Cu10Zr7
Particles

(µm)

B2-98 59 ± 5 ≥830
Until

resistivity
drop

98 ± 1 2 ± 1 1.1 × 104
±

0.1
2.3 ± 0.3

B2-83 44 ± 5 ≥330 83 ± 3 17 ± 3 22.0 × 104

± 0.7
1.7 ± 0.2

B2-59 34 ± 5 ≥150 59 ± 5 41 ± 5 61.2 × 104

± 1.5
1.1 ± 0.3

B2-27 34 ± 5 ≥150
1.6 s after
resistivity

drop
27 ± 4 73 ± 4 146.9 × 104

± 2.8
1.2 ± 0.2

B2-11 34 ± 5 ≥150
2.2 s after
resistivity

drop
11 ± 3 89 ± 3 169.5 × 104

± 2.1
1.0 ± 0.2
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Figure 2 displays the effect of the heating rate (current density) on the microstructure of the
flash-annealed Cu47.5Zr47.5Al5 metallic glass. X-ray diffraction analysis of the samples annealed at the
lowest heating rate (≥150 K s−1) reveals the presence of two crystalline phases: the low-temperature
equilibrium Cu10Zr7 and the metastable B2 CuZr phases (Figure 2a). As the heating rate increases
above 330 K s−1, the intensity of Cu10Zr7 reflections decreases significantly, indicating a lower content
of this phase in the sample (Figure 2b). Finally, at a heating rate of ≥830 K s−1, there are no detectable
peaks of the Cu10Zr7 phase and the sample mainly consists of the metastable B2 CuZr phase (Figure 2c).Nanomaterials 2020, 10, x FOR PEER REVIEW 4 of 10 

 

 

Figure 2. Effect of heating rate on the microstructure of flash annealed Cu47.5Zr47.5Al5 metallic glass. 

XRD patterns (a–c) and secondary electron SEM micrographs (d–f) of the Cu47.5Zr47.5Al5 metallic glass 

samples rapidly annealed by Joule heating (up to the resistivity drop) with the following current 

densities: (a,d) 34 ± 5 MA m−2; (b,e) 44 ± 5 MA m−2; and (c,f) and 59 ± 5 MA m−2. (Figure 2d is adopted 

from [20]). 

Figure 2d–f demonstrates the microstructure of the annealed Cu47.5Zr47.5Al5 metallic glass 

samples. The samples consist of dendritic Cu10Zr7 crystals that are homogeneously distributed in a 

B2 CuZr matrix. The volume fraction of the Cu10Zr7 dendrites increases with decreasing heating rate 

from about 2 ± 1 vol.% (≥830 K s−1) to 17 ± 3 vol.% (≥330 K s−1), finally reaching 41 ± 5 vol.% at the 

lowest heating rate (≥150 K s−1) (Table 1). The size of the Cu10Zr7 dendrites also depends on the applied 

heating rate or current density. A larger dendrite size is achieved at a higher heating rate and vice 

versa. For example, the mean dendrite size in the sample subjected to the highest heating rate ≥830 K 

s−1 is 2.3 ± 0.2 µm, while it drops to 1.1 ± 0.3 µm for the samples obtained at the heating rate ≥150 K 

s−1 (Table 1). Along with the volume fraction and size of the Cu10Zr7 crystals, their number increases 

with higher heating rate from about 1.1 × 104 to 22.0 × 104 and reaches 61.2 × 104 particles per mm2. 

Table 1. Microstructural characteristics of the Cu47.5Zr47.5Al5 metallic glass samples rapidly annealed 

until the resistivity drop. 

Sample 

Current 

Density 

(MA m−2) 

Estimated 

Heating 

Rate  

(K s−1) 

Annealing 

Time 

Volume 

Fraction 

of B2 

CuZr 

(vol.%) 

Volume 

Fraction 

of Cu10Zr7 

(vol.%) 

Number 

of Cu10Zr7 

Particles 

(mm−2) 

Size of  

Cu10Zr7 

Particles 

(µm) 

B2-98 59 ± 5 ≥830 

Until 

resistivity 

drop 

98 ± 1 2 ± 1 
1.1 × 104 ± 

0.1 
2.3 ± 0.3 

B2-83 44 ± 5 ≥330 83 ± 3 17 ± 3 
22.0 × 104 

± 0.7 
1.7 ± 0.2 

B2-59 34 ± 5 ≥150 59 ± 5 41 ± 5 
61.2 × 104 

± 1.5 
1.1 ± 0.3 

B2-27 34 ± 5 ≥150 

1.6 s after 

resistivity 

drop 

27 ± 4 73 ± 4 
146.9 × 104 

± 2.8 
1.2 ± 0.2 

B2-11 34 ± 5 ≥150 

2.2 s after 

resistivity 

drop 

11 ± 3 89 ± 3 
169.5 × 104 

± 2.1 
1.0 ± 0.2 

Figure 2. Effect of heating rate on the microstructure of flash annealed Cu47.5Zr47.5Al5 metallic glass.
XRD patterns (a–c) and secondary electron SEM micrographs (d–f) of the Cu47.5Zr47.5Al5 metallic
glass samples rapidly annealed by Joule heating (up to the resistivity drop) with the following current
densities: (a,d) 34 ± 5 MA m−2; (b,e) 44 ± 5 MA m−2; and (c,f) and 59 ± 5 MA m−2. (Figure 2d is
adopted from [20]).

Figure 2d–f demonstrates the microstructure of the annealed Cu47.5Zr47.5Al5 metallic glass samples.
The samples consist of dendritic Cu10Zr7 crystals that are homogeneously distributed in a B2 CuZr
matrix. The volume fraction of the Cu10Zr7 dendrites increases with decreasing heating rate from
about 2 ± 1 vol.% (≥830 K s−1) to 17 ± 3 vol.% (≥330 K s−1), finally reaching 41 ± 5 vol.% at the lowest
heating rate (≥150 K s−1) (Table 1). The size of the Cu10Zr7 dendrites also depends on the applied
heating rate or current density. A larger dendrite size is achieved at a higher heating rate and vice versa.
For example, the mean dendrite size in the sample subjected to the highest heating rate ≥830 K s−1 is
2.3 ± 0.2 µm, while it drops to 1.1 ± 0.3 µm for the samples obtained at the heating rate ≥150 K s−1

(Table 1). Along with the volume fraction and size of the Cu10Zr7 crystals, their number increases with
higher heating rate from about 1.1 × 104 to 22.0 × 104 and reaches 61.2 × 104 particles per mm2.

The volume fraction of Cu10Zr7 dendrites in the B2 CuZr matrix can also be tuned by controlling
the annealing time at a constant current density (heating rate), as shown in Figure 3. To reveal this
effect, several samples annealed (i) until the resistivity drop, (ii) 1.6 s after the resistivity drop, and
(iii) 2.2 s after the resistivity drop at a current density i3 = 34 ± 5 MA m−2 (≥150 K s−1) were selected.
X-ray analysis indicates the presence of two phases in these samples, namely, the low-temperature
equilibrium Cu10Zr7 phase and the metastable B2 CuZr phase. The intensity of the B2 CuZr phase
peaks is highest for the samples annealed until the resistivity drop. A relatively small increase in
annealing time (1.6–2.2 s) leads to a higher intensity of the Cu10Zr7 peaks. This is in agreement with
the findings from secondary electron micrographs (Figure 3d–e). The increase of annealing time at the
constant heating rate (≥150 K s−1) leads to a higher volume fraction and a larger number of Cu10Zr7

dendrites (Table 1). Particularly, the volume fraction of the Cu10Zr7 dendrites increases from 41 ± 5 to
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89 ± 3 vol.% for the annealing times until the resistivity drop and 2.2 s after the drop, respectively. In
contrast to the effect of heating rate, the size of the Cu10Zr7 dendrites varies insignificantly for different
annealing times. These findings suggest that the volume fraction, number, and size of the Cu10Zr7

crystals strongly depend on the specific heat treatment conditions and can be tuned by varying the
current density being proportional to the heating rate.
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Figure 3. Effect of annealing time on the microstructure of flash annealed Cu47.5Zr47.5Al5 metallic
glass. X-ray diffractograms (a–c) and secondary electron micrographs (d–f) of the Cu47.5Zr47.5Al5
metallic glass samples rapidly annealed by Joule heating at the current density i3 = 34 ± 5 MA m−2 and
different times: (a,d) until the resistivity drop; (b,e) 1.6 s after the resistivity drop; and (c,f) 2.2 s after
the resistivity drop. (Figure 3d is adopted from [20]).

In the current study, the flash Joule heating of the Cu47.5Zr47.5Al5 metallic glass leads to its
devitrification into two phases: metastable B2 CuZr and equilibrium Cu10Zr7. This finding is in
contrast to the equilibrium phase diagram [39] and some experimental as well as theoretical studies
on the devitrification sequence of CuZr-based metallic glasses [33,35,38,40]. Based on theoretical
considerations, Kaban et al. suggested that the Cu47.5Zr47.5Al5 metallic glass devitrifies following the
sequence Cu10Zr7→CuZr2→B2 CuZr [40]. Experimental studies show that the Cu47.5Zr47.5Al5 metallic
glass directly transforms into the Cu10Zr7 and CuZr2 equilibrium phases upon annealing at low heating
rates of 10–40 K min−1, while the CuZr2 phase precipitates after the Cu10Zr7 phase [38]. Recent reports
demonstrated that rapid annealing of the Cu47.5Zr47.5Al5 metallic glass can suppress the formation of
the low-temperature equilibrium phases completely [33] or partially [20], leading to its transformation
into the non-equilibrium B2 CuZr phase. In the latter case, the Cu10Zr7 crystals are found within
the B2 CuZr precipitates but the second equilibrium CuZr2 phase is not observed. According to the
devitrification experiments and theoretical studies [38,40], the CuZr2 phase precipitates after Cu10Zr7,
and, therefore, it can be assumed that in the current flash annealing case, the conditions for the
precipitation of the CuZr2 phase are not fulfilled. The CuZr2 phase requires a specific stoichiometry
for nucleation, which is probably not achieved during the short processing time.

The annealing conditions such as annealing temperature and time affect the nucleation and growth
rate of precipitates. The growth rate is determined by the rate of diffusion and, therefore, it increases
with increasing temperature [41]. The nucleation rate is also temperature-dependent and exhibits a
maximum in an intermediate temperature range (Figure 4). According to the obtained results, the
number of Cu10Zr7 dendrites decreases while their average size increases at higher heating rate. This
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suggests that the B2-98 sample with the lowest number (1.1 × 104
± 0.1 × mm−2) and the largest

size (2.3 ± 0.3 µm) of Cu10Zr7 dendrites was subjected to the highest transformation temperature. A
decrease of the heating rate leads to a larger number of Cu10Zr7 dendrites, which also become finer.
This can be explained by a decrease of the average transformation temperature, which seems to be
dependent on heating rate. The lowest applied heating rate (here, 150 K s−1) corresponds to the most
optimum average transformation temperature for the highest nucleation rate. Therefore, increasing
the annealing time in this case leads to a significant increase of the number of Cu10Zr7 dendrites.
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Nucleation and growth rate curves are drawn based on reference [41].

Tailored by flash annealing of the Cu47.5Zr47.5Al5 metallic glass, the composite microstructure of
the current samples leads to notable tensile deformability and high strength (Figure 5) comparable with
that of metallic glass matrix composites [20,33]. Moreover, the crystalline samples exhibit pronounced
strain-hardening behaviour. The yield strength of the samples increases from 700 ± 30 to 1440 ± 30 MPa
with increasing volume fraction of Cu10Zr7 dendrites (Table 2). This strength increase with increasing
volume fraction of Cu10Zr7 dendrites is at the cost of tensile deformability: the strain-to-fracture
decreases form 7.1 ± 0.5 to 1.8 ± 0.2% when the volume fraction of Cu10Zr7 dendrites increases from 2 ±
1 to 73 ± 4 vol.%. However, these fracture strain values are still in the range of interest for technological
applications. For example, the B2-83 sample exhibits a tensile ductility of 7.5 ± 0.5%. Due to increasing
strain hardening, the ultimate tensile strength increases from 1580 ± 50 to 1710 ± 50 MPa with higher
volume fraction and number of Cu10Zr7 dendrites in the B2 CuZr matrix (Table 2).

Table 2. Mechanical properties of the Cu10Zr7 dendrite/B2 nano- and microcomposites obtained by
flash annealing the Cu47.5Zr47.5Al5 metallic glass.

Sample Yield Strength
(MPa)

Ultimate Tensile
Strength (MPa)

Young’s Modulus
(GPa)

Strain to
Fracture (%)

B2-27 1440 ± 30 1580 ± 50 94.9 ± 0.6 1.8 ± 0.2
B2-59 1220 ± 30 1670 ± 50 94.3 ± 0.4 2.7 ± 0.1
B2-83 980 ± 30 1710 ± 50 87.2 ± 0.4 7.5 ± 0.5
B2-98 700 ± 30 1320 ± 50 79.5 ± 0.8 7.1 ± 0.5
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Figure 5. Room temperature tensile true stress-true strain curves of the Cu10Zr7 dendrite/B2 nano- and
microcomposites obtained by flash annealing the Cu47.5Zr47.5Al5 metallic glass. (a) Annealed at 34 ±
5 MA m−2 until 1.6 s after the onset of the resistivity drop; (b) annealed at 34 ± 5 MA m−2 until the
resistivity drop; (c) annealed at 44 ± 5 MA m−2 until the resistivity drop; and (d) annealed at 59 ± 5 MA
m−2 until resistivity drop. The values at the end of the stress-strain curves indicate the volume fraction
of the Cu10Zr7 dendrites. (Stress-strain curve “d” is adopted from [20]).

4. Conclusions

In summary, we have tailored different microstructures by devitrification of the Cu47.5Zr47.5Al5
metallic glass using flash Joule annealing. The size and volume fraction of the constituent
phases—metastable B2 CuZr and equilibrium Cu10Zr7—can be flexibly tuned by optimizing the
heating rate and annealing time. The strength of the Cu10Zr7/B2 nanocomposites obtained through
flash Joule heating and annealing exceeds that of the initial metallic glass and is comparable with
that of metallic glass matrix composites. Hence, glassy materials provide a unique base for obtaining
non-equilibrium microstructures by flash annealing with technologically attractive properties that
cannot be achieved through conventional processing.
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