56 research outputs found

    Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    Get PDF
    Calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H_4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H_2olz)⋅4 H_2O chains, two-dimensional Ca(H_2olz)⋅2 H_2O sheets, and a three-dimensional metal-organic framework Ca(H_2olz)⋅2DMF (DMF=N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H_2olz) phase when exposed to aqueous HCl. The compounds Ca(H_2olz)⋅x H_2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. All three calcium materials exhibited a delayed release of olsalazine relative to Na_2(H_2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance

    Isolation and Biophysical Study of Fruit Cuticles

    Get PDF
    The cuticle, a hydrophobic protective layer on the aerial parts of terrestrial plants, functions as a versatile defensive barrier to various biotic and abiotic stresses and also regulates water flow from the external environment.1 A biopolyester (cutin) and long-chain fatty acids (waxes) form the principal structural framework of the cuticle; the functional integrity of the cuticular layer depends on the outer \u27epicuticular\u27 layer as well as the blend consisting of the cutin biopolymer and \u27intracuticular\u27 waxes.2 Herein, we describe a comprehensive protocol to extract waxes exhaustively from commercial tomato (Solanum lycopersicum) fruit cuticles or to remove epicuticular and intracuticular waxes sequentially and selectively from the cuticle composite. The method of Jetter and Schäffer (2001) was adapted for the stepwise extraction of epicuticular and intracuticular waxes from the fruit cuticle.3,4 To monitor the process of sequential wax removal, solid-state cross-polarization magic-angle-spinning (CPMAS) 13C NMR spectroscopy was used in parallel with atomic force microscopy (AFM), providing molecular-level structural profiles of the bulk materials complemented by information on the microscale topography and roughness of the cuticular surfaces. To evaluate the cross-linking capabilities of dewaxed cuticles from cultivated wild-type and single-gene mutant tomato fruits, MAS 13C NMR was used to compare the relative proportions of oxygenated aliphatic (CHO and CH2O) chemical moieties. Exhaustive dewaxing by stepwise Soxhlet extraction with a panel of solvents of varying polarity provides an effective means to isolate wax moieties based on the hydrophobic characteristics of their aliphatic and aromatic constituents, while preserving the chemical structure of the cutin biopolyester. The mechanical extraction of epicuticular waxes and selective removal of intracuticular waxes, when monitored by complementary physical methodologies, provides an unprecedented means to investigate the cuticle assembly: this approach reveals the supramolecular organization and structural integration of various types of waxes, the architecture of the cutin-wax matrix, and the chemical composition of each constituent. In addition, solid-state 13C NMR reveals differences in the relative numbers of CHO and CH2O chemical moieties for wild-type and mutant red ripe tomato fruits. The NMR techniques offer exceptional tools to fingerprint the molecular structure of cuticular materials that are insoluble, amorphous, and chemically heterogeneous. As a noninvasive surface-selective imaging technique, AFM furnishes an effective and direct means to probe the structural organization of the cuticular assembly on the nm-μm length scale. The cuticle, a hydrophobic protective layer on the aerial parts of terrestrial plants, functions as a versatile defensive barrier to various biotic and abiotic stresses and also regulates water flow from the external environment. 1 A biopolyester (cutin) and long-chain fatty acids (waxes) form the principal structural framework of the cuticle; the functional integrity of the cuticular layer depends on the outer \u27epicuticular\u27 layer as well as the blend consisting of the cutin biopolymer and \u27intracuticular\u27 waxes. 2 Herein, we describe a comprehensive protocol to extract waxes exhaustively from commercial tomato ( Solanum lycopersicum ) fruit cuticles or to remove epicuticular and intracuticular waxes sequentially and selectively from the cuticle composite. The method of Jetter and Schäffer (2001) was adapted for the stepwise extraction of epicuticular and intracuticular waxes from the fruit cuticle. 3,4 To monitor the process of sequential wax removal, solid-state cross-polarization magic-angle-spinning (CPMAS) 13 C NMR spectroscopy was used in parallel with atomic force microscopy (AFM), providing molecular-level structural profiles of the bulk materials complemented by information on the microscale topography and roughness of the cuticular surfaces. To evaluate the cross-linking capabilities of dewaxed cuticles from cultivated wild-type and single-gene mutant tomato fruits, MAS 13 C NMR was used to compare the relative proportions of oxygenated aliphatic (CHO and CH 2 O) chemical moieties

    Calcium Coordination Solids for pH-Triggered Release of Olsalazine

    Get PDF
    Calcium coordination solids were synthesized and evaluated for delivery of olsalazine (H_4olz), an anti-inflammatory compound used for treatment of ulcerative colitis. The materials include one-dimensional Ca(H_2olz)⋅4 H_2O chains, two-dimensional Ca(H_2olz)⋅2 H_2O sheets, and a three-dimensional metal-organic framework Ca(H_2olz)⋅2DMF (DMF=N,N-dimethylformamide). The framework undergoes structural changes in response to solvent, forming a dense Ca(H_2olz) phase when exposed to aqueous HCl. The compounds Ca(H_2olz)⋅x H_2O (x=0, 2, 4) were each pressed into pellets and exposed to simulated gastrointestinal fluids to mimic the passage of a pill from the acidic stomach to the pH-neutral intestines. All three calcium materials exhibited a delayed release of olsalazine relative to Na_2(H_2olz), the commercial formulation, illustrating how formulation of a drug within an extended coordination solid can serve to tune its solubility and performance

    Olsalazine-Based Metal–Organic Frameworks as Biocompatible Platforms for H_2 Adsorption and Drug Delivery

    Get PDF
    The drug olsalazine (H_4olz) was employed as a ligand to synthesize a new series of mesoporous metal–organic frameworks that are expanded analogues of the well-known M_2(dobdc) materials (dobdc^4– = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M_2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diameter. Variable temperature H_2 adsorption isotherms revealed strong adsorption at the open metal sites, and in situ infrared spectroscopy experiments on Mg_2(olz) and Ni_2(olz) were used to determine site-specific H_2 binding enthalpies. In addition to its capabilities for gas sorption, the highly biocompatible Mg_2(olz) framework was also evaluated as a platform for the delivery of olsalazine and other encapsulated therapeutics. The Mg_2(olz) material (86 wt % olsalazine) was shown to release the therapeutic linker through dissolution of the framework under simulated physiological conditions. Furthermore, Mg_2(olz) was used to encapsulate phenethylamine (PEA), a model drug for a broad class of bioactive compounds. Under simulated physiological conditions, Mg_2(olz)(PEA)_2 disassembled to release PEA from the pores and olsalazine from the framework itself, demonstrating that multiple therapeutic components can be delivered together at different rates. The low toxicity, high surface areas, and coordinatively unsaturated metal sites make these M_2(olz) materials promising for a range of potential applications, including drug delivery in the treatment of gastrointestinal diseases

    Olsalazine-Based Metal–Organic Frameworks as Biocompatible Platforms for H_2 Adsorption and Drug Delivery

    Get PDF
    The drug olsalazine (H_4olz) was employed as a ligand to synthesize a new series of mesoporous metal–organic frameworks that are expanded analogues of the well-known M_2(dobdc) materials (dobdc^4– = 2,5-dioxido-1,4-benzenedicarboxylate; M-MOF-74). The M_2(olz) frameworks (M = Mg, Fe, Co, Ni, and Zn) exhibit high surface areas with large hexagonal pore apertures that are approximately 27 Å in diameter. Variable temperature H_2 adsorption isotherms revealed strong adsorption at the open metal sites, and in situ infrared spectroscopy experiments on Mg_2(olz) and Ni_2(olz) were used to determine site-specific H_2 binding enthalpies. In addition to its capabilities for gas sorption, the highly biocompatible Mg_2(olz) framework was also evaluated as a platform for the delivery of olsalazine and other encapsulated therapeutics. The Mg_2(olz) material (86 wt % olsalazine) was shown to release the therapeutic linker through dissolution of the framework under simulated physiological conditions. Furthermore, Mg_2(olz) was used to encapsulate phenethylamine (PEA), a model drug for a broad class of bioactive compounds. Under simulated physiological conditions, Mg_2(olz)(PEA)_2 disassembled to release PEA from the pores and olsalazine from the framework itself, demonstrating that multiple therapeutic components can be delivered together at different rates. The low toxicity, high surface areas, and coordinatively unsaturated metal sites make these M_2(olz) materials promising for a range of potential applications, including drug delivery in the treatment of gastrointestinal diseases
    • …
    corecore