11 research outputs found

    Broadband anti-reflection coating for the meter class Dark Energy Spectroscopic Instrument lenses

    Get PDF
    The Dark Energy Spectroscopic Instrument (DESI), currently under construction, will be used to measure the expansion history of the Universe using the Baryon Acoustic Oscillation technique. The spectra of 35 million galaxies and quasars over 14000 sq deg will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers, in turn, feed ten broad-band spectrographs. We will describe the broadband AR coating (360 nm to 980nm) that was applied to the lenses of the camera system for DESI using ion assisted deposition techniques in a 3 m coating chamber. The camera has 6 lenses ranging in diameter from 0.8 m to 1.14 m, weighing from 84 kg to 237 kg and made from fused silica or BK7. The size and shape of the surfaces provided challenges in design, uniformity control, handling, tooling and process control. Single surface average transmission and minimum transmission met requirements. The varied optical surfaces and angle of incidence considerations meant the uniformity of the coating was of prime concern. The surface radius of curvature (ROC) for the 12 surfaces ranged from nearly flat to a ROC of 611 mm and a sag of 140 mm. One lens surface has an angle of incidence variation from normal incidence to 40°. Creating a design with a larger than required bandwidth to compensate for the non-uniformity and angle variation created the ability to reduce the required coating uniformity across the lens and a single design to be used for all common substrate surfaces. While a perfectly uniform coating is often the goal it is usually not practicable or cost effective for highly curved surfaces. The coating chamber geometry allowed multiple radial positions of the deposition sources as well as substrate height variability. Using these two variables we were able to avoid using any masking to achieve the uniformity required to meet radial and angle performance goals. Very broadband AR coatings usually have several very thin and optically important layers. The DESI coating design has layers approaching 3 nm in thickness. Having sensitive thin layers in the design meant controlling layer thickness and azimuthal variation were critical to manufacturing repeatability. Through use of strategically placed quartz crystal monitors combined with stable deposition plumes, the manufacturing variability was reduced to acceptable levels. Low deposition rates and higher rotation rates also provided some stability to azimuthal variation

    Author’s Reply

    No full text

    Ubiquitin Ligase HUWE1 Regulates Axon Branching through the Wnt/beta-Catenin Pathway in a Drosophila Model for Intellectual Disability

    Get PDF
    Contains fulltext : 126190.pdf (publisher's version ) (Open Access)We recently reported that duplication of the E3 ubiquitin ligase HUWE1 results in intellectual disability (ID) in male patients. However, the underlying molecular mechanism remains unknown. We used Drosophila melanogaster as a model to investigate the effect of increased HUWE1 levels on the developing nervous system. Similar to the observed levels in patients we overexpressed the HUWE1 mRNA about 2-fold in the fly. The development of the mushroom body and neuromuscular junctions were not altered, and basal neurotransmission was unaffected. These data are in agreement with normal learning and memory in the courtship conditioning paradigm. However, a disturbed branching phenotype at the axon terminals of the dorsal cluster neurons (DCN) was detected. Interestingly, overexpression of HUWE1 was found to decrease the protein levels of dishevelled (dsh) by 50%. As dsh as well as Fz2 mutant flies showed the same disturbed DCN branching phenotype, and the constitutive active homolog of beta-catenin, armadillo, could partially rescue this phenotype, our data strongly suggest that increased dosage of HUWE1 compromises the Wnt/beta-catenin pathway possibly by enhancing the degradation of dsh

    Non-technical skills for emergency incident management teams: A literature review

    Get PDF
    Every year, incident management teams (IMTs) coordinate the response to hundreds of emergency events across Australasia. Larger scale emergencies such as a storms, floods, wildfires, oil spills and chemical explosions can place a lot of pressure on an IMT. Non‐technical skills play a central role in the performance of these teams. This article reviewed the broader non‐technical skills (NTS) literature before focusing on the NTS required for emergency management. It was found that most NTS frameworks share four to five common skill categories, although there were greater differences at the element and behavioural marker level. A variety of issues were identified in the literature that highlight that emergency management is very different from other domains where NTS systems have been developed. The literature on NTS in conjunction with this set of issues was used to develop a proposed NTS framework for emergency IMTs. This framework comprises 7 skill categories (i.e. communication, coordination, cooperation, decision‐making, situation awareness, leadership and coping, stress and fatigue management). The 7 skills can be further delineated into 16 elements and 44 behavioural markers. The framework provides a prototype that can form the basis for further research in this area
    corecore