16 research outputs found

    Multisensory learning binds neurons into a cross-modal memory engram

    Get PDF
    Associating multiple sensory cues with objects and experience is a fundamental brain process that improves object recognition and memory performance. However, neural mechanisms that bind sensory features during learning and augment memory expression are unknown. Here we demonstrate multisensory appetitive and aversive memory in Drosophila. Combining colours and odours improved memory performance, even when each sensory modality was tested alone. Temporal control of neuronal function revealed visually selective mushroom body Kenyon cells (KCs) to be required for enhancement of both visual and olfactory memory after multisensory training. Voltage imaging in head-fixed flies showed that multisensory learning binds activity between streams of modality-specific KCs so that unimodal sensory input generates a multimodal neuronal response. Binding occurs between regions of the olfactory and visual KC axons, which receive valence-relevant dopaminergic reinforcement, and is propagated downstream. Dopamine locally releases GABAergic inhibition to permit specific microcircuits within KC-spanning serotonergic neurons to function as an excitatory bridge between the previously ‘modality-selective’ KC streams. Cross-modal binding thereby expands the KCs representing the memory engram for each modality into those representing the other. This broadening of the engram improves memory performance after multisensory learning and permits a single sensory feature to retrieve the memory of the multimodal experience

    A novel fragile X syndrome mutation reveals a conserved role for the carboxy-terminus in FMRP localization and function

    Get PDF
    Loss of function of the FMR1 gene leads to fragile X syndrome (FXS), the most common form of intellectual disability. The loss of FMR1 function is usually caused by epigenetic silencing of the FMR1 promoter leading to expansion and subsequent methylation of a CGG repeat in the 5′ untranslated region. Very few coding sequence variations have been experimentally characterized and shown to be causal to the disease. Here, we describe a novel FMR1 mutation and reveal an unexpected nuclear export function for the C-terminus of FMRP. We screened a cohort of patients with typical FXS symptoms who tested negative for CGG repeat expansion in the FMR1 locus. In one patient, we identified a guanine insertion in FMR1 exon 15. This mutation alters the open reading frame creating a short novel C-terminal sequence, followed by a stop codon. We find that this novel peptide encodes a functional nuclear localization signal (NLS) targeting the patient FMRP to the nucleolus in human cells. We also reveal an evolutionarily conserved nuclear export function associated with the endogenous C-terminus of FMRP. In vivo analyses in Drosophila demonstrate that a patient-mimetic mutation alters the localization and function of Dfmrp in neurons, leading to neomorphic neuronal phenotypes

    Genetic approaches in Drosophila for the study neurodevelopmental disorders

    Get PDF
    The fruit fly Drosophila melanogaster is one of the premier genetic model organisms used in biomedical research today owing to the extraordinary power of its genetic tool-kit. Made famous by numerous seminal discoveries of basic developmental mechanisms and behavioral genetics, the power of fruit fly genetics is becoming increasingly applied to questions directly relevant to human health. In this review we discuss how Drosophila research is applied to address major questions in neurodevelopmental disorders. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.status: publishe

    Revisiting the genetics of Fragile X syndrome

    No full text
    status: publishe

    Reduced Lateral Inhibition Impairs Olfactory Computations and Behaviors in a Drosophila Model of Fragile X Syndrome

    No full text
    International audienceFragile X syndrome (FXS) patients present neuronal alterations that lead to severe intellectual disability, but the underlying neuronal circuit mechanisms are poorly understood. An emerging hypothesis postulates that reduced GABAergic inhibition of excitatory neurons is a key component in the pathophysiology of FXS. Here, we directly test this idea in a FXS Drosophila model. We show that FXS flies exhibit strongly impaired olfactory behaviors. In line with this, olfactory representations are less odor specific due to broader response tuning of excitatory projection neurons. We find that impaired inhibitory interactions underlie reduced specificity in olfactory computations. Finally, we show that defective lateral inhibition across projection neurons is caused by weaker inhibition from GABAergic interneurons. We provide direct evidence that deficient inhibition impairs sensory computations and behavior in an in vivo model of FXS. Together with evidence of impaired inhibition in autism and Rett syndrome, these findings suggest a potentially general mechanism for intellectual disability

    Prior experience conditionally inhibits the expression of new learning in Drosophila

    No full text
    Prior experience of a stimulus can inhibit subsequent acquisition or expression of a learned association of that stimulus. However, the neuronal manifestations of this learning effect, named latent inhibition (LI), are poorly understood. Here, we show that prior odor exposure can produce context-dependent LI of later appetitive olfactory memory performance in Drosophila. Odor pre-exposure forms a short-lived aversive memory whose lone expression lacks context-dependence. Acquisition of odor pre-exposure memory requires aversively reinforcing dopaminergic neurons that innervate two mushroom body compartments—one group of which exhibits increasing activity with successive odor experience. Odor-specific responses of the corresponding mushroom body output neurons are suppressed, and their output is necessary for expression of both pre-exposure memory and LI of appetitive memory. Therefore, odor pre-exposure attaches negative valence to the odor itself, and LI of appetitive memory results from a temporary and context-dependent retrieval deficit imposed by competition with the parallel short-lived aversive memory

    The Drosophila homologue of the amyloid precursor protein is a conserved modulator of Wnt PCP signaling

    No full text
    Wnt Planar Cell Polarity (PCP) signaling is a universal regulator of polarity in epithelial cells, but it regulates axon outgrowth in neurons, suggesting the existence of axonal modulators of Wnt-PCP activity. The Amyloid precursor proteins (APPs) are intensely investigated because of their link to Alzheimer's disease (AD). APP's in vivo function in the brain and the mechanisms underlying it remain unclear and controversial. Drosophila possesses a single APP homologue called APP Like, or APPL. APPL is expressed in all neurons throughout development, but has no established function in neuronal development. We therefore investigated the role of Drosophila APPL during brain development. We find that APPL is involved in the development of the Mushroom Body αβ neurons and, in particular, is required cell-autonomously for the β-axons and non-cell autonomously for the α-axons growth. Moreover, we find that APPL is a modulator of the Wnt-PCP pathway required for axonal outgrowth, but not cell polarity. Molecularly, both human APP and fly APPL form complexes with PCP receptors, thus suggesting that APPs are part of the membrane protein complex upstream of PCP signaling. Moreover, we show that APPL regulates PCP pathway activation by modulating the phosphorylation of the Wnt adaptor protein Dishevelled (Dsh) by Abelson kinase (Abl). Taken together our data suggest that APPL is the first example of a modulator of the Wnt-PCP pathway specifically required for axon outgrowth.status: publishe

    The Drosophila neurogenin Tap functionally interacts with the Wnt-PCP pathway to regulate neuronal extension and guidance.

    Get PDF
    The neurogenin (Ngn) transcription factors control early neurogenesis and neurite outgrowth in mammalian cortex. In contrast to their proneural activity, their function in neurite growth is poorly understood. Drosophila has a single predicted Ngn homolog, Tap, of unknown function. Here we show that Tap is not a proneural protein in Drosophila but is required for proper axonal growth and guidance of neurons of the mushroom body, a neuropile required for associative learning and memory. Genetic and expression analyses suggest that Tap inhibits excessive axonal growth by fine regulation of the levels of the Wnt signaling adaptor protein Dishevelled.info:eu-repo/semantics/publishe

    The <i>Drosophila</i> Homologue of the Amyloid Precursor Protein Is a Conserved Modulator of Wnt PCP Signaling

    Get PDF
    <div><p>Wnt Planar Cell Polarity (PCP) signaling is a universal regulator of polarity in epithelial cells, but it regulates axon outgrowth in neurons, suggesting the existence of axonal modulators of Wnt-PCP activity. The Amyloid precursor proteins (APPs) are intensely investigated because of their link to Alzheimer's disease (AD). APP's in vivo function in the brain and the mechanisms underlying it remain unclear and controversial. <i>Drosophila</i> possesses a single APP homologue called APP Like, or APPL. APPL is expressed in all neurons throughout development, but has no established function in neuronal development. We therefore investigated the role of <i>Drosophila</i> APPL during brain development. We find that APPL is involved in the development of the Mushroom Body αβ neurons and, in particular, is required cell-autonomously for the β-axons and non-cell autonomously for the α-axons growth. Moreover, we find that APPL is a modulator of the Wnt-PCP pathway required for axonal outgrowth, but not cell polarity. Molecularly, both human APP and fly APPL form complexes with PCP receptors, thus suggesting that APPs are part of the membrane protein complex upstream of PCP signaling. Moreover, we show that APPL regulates PCP pathway activation by modulating the phosphorylation of the Wnt adaptor protein Dishevelled (Dsh) by Abelson kinase (Abl). Taken together our data suggest that APPL is the first example of a modulator of the Wnt-PCP pathway specifically required for axon outgrowth.</p> </div

    APP is required for the proper response to Wnt5 and forms complexes with PCP core proteins.

    No full text
    <p>(A) Analysis of the responsiveness of wt MEFs and MEFs lacking all the APP isoforms to Wnt5 treatment. MEFs were treated for 2 h with rmWnt5a and subsequently analyzed by Western blot. After the Wnt5 treatment, Dvl2 is phosphorylated and this modification is indicated by a shift of the band detected by Dvl2 Ab. KO MEFs respond less efficiently to Wnt5. Re-introduction of hAPP rescues the responsiveness to Wnt5. The graph shows a quantification of the ratio between phospho-Dvl2 and Dvl2 in the analyzed samples. * Indicates a <i>p</i> value<0.05 calculated with one-way ANOVA plus Tukey's multiple comparison test. (B) Co-immunoprecipitation (Co-IP) of Appl-FLAG and Vang-Myc. The tagged proteins were co-expressed in HEK293T cells and immunoprecipitated with anti-FLAG antibody. Vang-Myc can be precipitated upon IP of Appl-FLAG. (C) Co-IP of Appl-FLAG and human Vangl2-HA. Human Vangl2-HA can be precipitated upon IP of Appl-FLAG. (D) Co-IP of human APP (C99)-FLAG and human Vangl2-HA. Human Vangl2-HA can be precipitated upon IP of APP (C99)-FLAG, indicating that interaction with PCP proteins is a conserved feature of APP proteins. (E) Co-IP of Appl-FLAG and dFz-GFP. <i>Drosophila</i> Fz can be precipitated upon IP of Appl-FLAG. (F) Co-IP of human APP (C99)-FLAG and human V5-Fzd5. V5-Fzd5 can be precipitated upon IP of APP (C99)-FLAG.</p
    corecore